File size: 6,713 Bytes
bcdb559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.nn import Conv1d, AvgPool1d, Conv2d
from torch.nn.utils import weight_norm, spectral_norm

from .utils import get_padding

LRELU_SLOPE = 0.1

def stft(x, fft_size, hop_size, win_length, window):
    """Perform STFT and convert to magnitude spectrogram.
    Args:
        x (Tensor): Input signal tensor (B, T).
        fft_size (int): FFT size.
        hop_size (int): Hop size.
        win_length (int): Window length.
        window (str): Window function type.
    Returns:
        Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
    """
    x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
            return_complex=True)
    real = x_stft[..., 0]
    imag = x_stft[..., 1]

    return torch.abs(x_stft).transpose(2, 1)

class SpecDiscriminator(nn.Module):
    """docstring for Discriminator."""

    def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
        super(SpecDiscriminator, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.fft_size = fft_size
        self.shift_size = shift_size
        self.win_length = win_length
        self.window = getattr(torch, window)(win_length)
        self.discriminators = nn.ModuleList([
            norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
            norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
        ])

        self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))

    def forward(self, y):

        fmap = []
        y = y.squeeze(1)
        y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
        y = y.unsqueeze(1)
        for i, d in enumerate(self.discriminators):
            y = d(y)
            y = F.leaky_relu(y, LRELU_SLOPE)
            fmap.append(y)

        y = self.out(y)
        fmap.append(y)

        return torch.flatten(y, 1, -1), fmap

class MultiResSpecDiscriminator(torch.nn.Module):

    def __init__(self,
                 fft_sizes=[1024, 2048, 512],
                 hop_sizes=[120, 240, 50],
                 win_lengths=[600, 1200, 240],
                 window="hann_window"):

        super(MultiResSpecDiscriminator, self).__init__()
        self.discriminators = nn.ModuleList([
            SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
            SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
            SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
            ])

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs


class DiscriminatorP(torch.nn.Module):
    def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
        super(DiscriminatorP, self).__init__()
        self.period = period
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.convs = nn.ModuleList([
            norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
            norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
        ])
        self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))

    def forward(self, x):
        fmap = []

        # 1d to 2d
        b, c, t = x.shape
        if t % self.period != 0: # pad first
            n_pad = self.period - (t % self.period)
            x = F.pad(x, (0, n_pad), "reflect")
            t = t + n_pad
        x = x.view(b, c, t // self.period, self.period)

        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        fmap.append(x)
        x = torch.flatten(x, 1, -1)

        return x, fmap


class MultiPeriodDiscriminator(torch.nn.Module):
    def __init__(self):
        super(MultiPeriodDiscriminator, self).__init__()
        self.discriminators = nn.ModuleList([
            DiscriminatorP(2),
            DiscriminatorP(3),
            DiscriminatorP(5),
            DiscriminatorP(7),
            DiscriminatorP(11),
        ])

    def forward(self, y, y_hat):
        y_d_rs = []
        y_d_gs = []
        fmap_rs = []
        fmap_gs = []
        for i, d in enumerate(self.discriminators):
            y_d_r, fmap_r = d(y)
            y_d_g, fmap_g = d(y_hat)
            y_d_rs.append(y_d_r)
            fmap_rs.append(fmap_r)
            y_d_gs.append(y_d_g)
            fmap_gs.append(fmap_g)

        return y_d_rs, y_d_gs, fmap_rs, fmap_gs
    
class WavLMDiscriminator(nn.Module):
    """docstring for Discriminator."""

    def __init__(self, slm_hidden=768, 
                 slm_layers=13, 
                 initial_channel=64, 
                 use_spectral_norm=False):
        super(WavLMDiscriminator, self).__init__()
        norm_f = weight_norm if use_spectral_norm == False else spectral_norm
        self.pre = norm_f(Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0))
        
        self.convs = nn.ModuleList([
            norm_f(nn.Conv1d(initial_channel, initial_channel * 2, kernel_size=5, padding=2)),
            norm_f(nn.Conv1d(initial_channel * 2, initial_channel * 4, kernel_size=5, padding=2)),
            norm_f(nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)),
        ])

        self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
        
    def forward(self, x):
        x = self.pre(x)
        
        fmap = []
        for l in self.convs:
            x = l(x)
            x = F.leaky_relu(x, LRELU_SLOPE)
            fmap.append(x)
        x = self.conv_post(x)
        x = torch.flatten(x, 1, -1)

        return x