File size: 7,062 Bytes
bcdb559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from typing import Callable, Optional, Sequence
import torch
import torch.nn.functional as F
from a_unet import (
ClassifierFreeGuidancePlugin,
Conv,
Module,
TextConditioningPlugin,
TimeConditioningPlugin,
default,
exists,
)
from a_unet.apex import (
AttentionItem,
CrossAttentionItem,
InjectChannelsItem,
ModulationItem,
ResnetItem,
SkipCat,
SkipModulate,
XBlock,
XUNet,
)
from einops import pack, unpack
from torch import Tensor, nn
from torchaudio import transforms
"""
UNets (built with a-unet: https://github.com/archinetai/a-unet)
"""
def UNetV0(
dim: int,
in_channels: int,
channels: Sequence[int],
factors: Sequence[int],
items: Sequence[int],
attentions: Optional[Sequence[int]] = None,
cross_attentions: Optional[Sequence[int]] = None,
context_channels: Optional[Sequence[int]] = None,
attention_features: Optional[int] = None,
attention_heads: Optional[int] = None,
embedding_features: Optional[int] = None,
resnet_groups: int = 8,
use_modulation: bool = True,
modulation_features: int = 1024,
embedding_max_length: Optional[int] = None,
use_time_conditioning: bool = True,
use_embedding_cfg: bool = False,
use_text_conditioning: bool = False,
out_channels: Optional[int] = None,
):
# Set defaults and check lengths
num_layers = len(channels)
attentions = default(attentions, [0] * num_layers)
cross_attentions = default(cross_attentions, [0] * num_layers)
context_channels = default(context_channels, [0] * num_layers)
xs = (channels, factors, items, attentions, cross_attentions, context_channels)
assert all(len(x) == num_layers for x in xs) # type: ignore
# Define UNet type
UNetV0 = XUNet
if use_embedding_cfg:
msg = "use_embedding_cfg requires embedding_max_length"
assert exists(embedding_max_length), msg
UNetV0 = ClassifierFreeGuidancePlugin(UNetV0, embedding_max_length)
if use_text_conditioning:
UNetV0 = TextConditioningPlugin(UNetV0)
if use_time_conditioning:
assert use_modulation, "use_time_conditioning requires use_modulation=True"
UNetV0 = TimeConditioningPlugin(UNetV0)
# Build
return UNetV0(
dim=dim,
in_channels=in_channels,
out_channels=out_channels,
blocks=[
XBlock(
channels=channels,
factor=factor,
context_channels=ctx_channels,
items=(
[ResnetItem]
+ [ModulationItem] * use_modulation
+ [InjectChannelsItem] * (ctx_channels > 0)
+ [AttentionItem] * att
+ [CrossAttentionItem] * cross
)
* items,
)
for channels, factor, items, att, cross, ctx_channels in zip(*xs) # type: ignore # noqa
],
skip_t=SkipModulate if use_modulation else SkipCat,
attention_features=attention_features,
attention_heads=attention_heads,
embedding_features=embedding_features,
modulation_features=modulation_features,
resnet_groups=resnet_groups,
)
"""
Plugins
"""
def LTPlugin(
net_t: Callable, num_filters: int, window_length: int, stride: int
) -> Callable[..., nn.Module]:
"""Learned Transform Plugin"""
def Net(
dim: int, in_channels: int, out_channels: Optional[int] = None, **kwargs
) -> nn.Module:
out_channels = default(out_channels, in_channels)
in_channel_transform = in_channels * num_filters
out_channel_transform = out_channels * num_filters # type: ignore
padding = window_length // 2 - stride // 2
encode = Conv(
dim=dim,
in_channels=in_channels,
out_channels=in_channel_transform,
kernel_size=window_length,
stride=stride,
padding=padding,
padding_mode="reflect",
bias=False,
)
decode = nn.ConvTranspose1d(
in_channels=out_channel_transform,
out_channels=out_channels, # type: ignore
kernel_size=window_length,
stride=stride,
padding=padding,
bias=False,
)
net = net_t( # type: ignore
dim=dim,
in_channels=in_channel_transform,
out_channels=out_channel_transform,
**kwargs
)
def forward(x: Tensor, *args, **kwargs):
x = encode(x)
x = net(x, *args, **kwargs)
x = decode(x)
return x
return Module([encode, decode, net], forward)
return Net
def AppendChannelsPlugin(
net_t: Callable,
channels: int,
):
def Net(
in_channels: int, out_channels: Optional[int] = None, **kwargs
) -> nn.Module:
out_channels = default(out_channels, in_channels)
net = net_t( # type: ignore
in_channels=in_channels + channels, out_channels=out_channels, **kwargs
)
def forward(x: Tensor, *args, append_channels: Tensor, **kwargs):
x = torch.cat([x, append_channels], dim=1)
return net(x, *args, **kwargs)
return Module([net], forward)
return Net
"""
Other
"""
class MelSpectrogram(nn.Module):
def __init__(
self,
n_fft: int,
hop_length: int,
win_length: int,
sample_rate: int,
n_mel_channels: int,
center: bool = False,
normalize: bool = False,
normalize_log: bool = False,
):
super().__init__()
self.padding = (n_fft - hop_length) // 2
self.normalize = normalize
self.normalize_log = normalize_log
self.hop_length = hop_length
self.to_spectrogram = transforms.Spectrogram(
n_fft=n_fft,
hop_length=hop_length,
win_length=win_length,
center=center,
power=None,
)
self.to_mel_scale = transforms.MelScale(
n_mels=n_mel_channels, n_stft=n_fft // 2 + 1, sample_rate=sample_rate
)
def forward(self, waveform: Tensor) -> Tensor:
# Pack non-time dimension
waveform, ps = pack([waveform], "* t")
# Pad waveform
waveform = F.pad(waveform, [self.padding] * 2, mode="reflect")
# Compute STFT
spectrogram = self.to_spectrogram(waveform)
# Compute magnitude
spectrogram = torch.abs(spectrogram)
# Convert to mel scale
mel_spectrogram = self.to_mel_scale(spectrogram)
# Normalize
if self.normalize:
mel_spectrogram = mel_spectrogram / torch.max(mel_spectrogram)
mel_spectrogram = 2 * torch.pow(mel_spectrogram, 0.25) - 1
if self.normalize_log:
mel_spectrogram = torch.log(torch.clamp(mel_spectrogram, min=1e-5))
# Unpack non-spectrogram dimension
return unpack(mel_spectrogram, ps, "* f l")[0]
|