File size: 12,476 Bytes
bcdb559 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
print("NLTK")
import nltk
nltk.download('punkt')
print("SCIPY")
from scipy.io.wavfile import write
print("TORCH STUFF")
import torch
print("START")
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# import torch
# print(torch.cuda.device_count())
import IPython.display as ipd
import os
os.environ['CUDA_HOME'] = '/home/ubuntu/miniconda3/envs/respair/lib/python3.11/site-packages/torch/lib/include/cuda'
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
# load packages
from text_utils import TextCleaner
textclenaer = TextCleaner()
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
import time
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize
from models import *
from Modules.KotoDama_sampler import tokenizer_koto_prompt, tokenizer_koto_text
from utils import *
import nltk
nltk.download('punkt_tab')
from nltk.tokenize import sent_tokenize
from konoha import SentenceTokenizer
sent_tokenizer = SentenceTokenizer()
# %matplotlib inline
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style_through_clip(path):
wave, sr = librosa.load(path, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
def Kotodama_Prompter(model, text, device):
with torch.no_grad():
style = model.KotoDama_Prompt(**tokenizer_koto_prompt(text, return_tensors="pt").to(device))['logits']
return style
def Kotodama_Sampler(model, text, device):
with torch.no_grad():
style = model.KotoDama_Text(**tokenizer_koto_text(text, return_tensors="pt").to(device))['logits']
return style
device = 'cuda' if torch.cuda.is_available() else 'cpu'
config = yaml.safe_load(open("Configs/config_kanade.yml"))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
KotoDama_Prompter = load_KotoDama_Prompter(path="Utils/KTD/prompt_enc/checkpoint-73285")
KotoDama_TextSampler = load_KotoDama_TextSampler(path="Utils/KTD/text_enc/checkpoint-22680")
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)
model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert, KotoDama_Prompter, KotoDama_TextSampler)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]
params_whole = torch.load("Models/Style_Tsukasa_v02/Top_ckpt_24khz.pth", map_location='cpu')
params = params_whole['net']
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
# load params
model[key].load_state_dict(new_state_dict, strict=False)
# except:
# _load(params[key], model[key])
_ = [model[key].eval() for key in model]
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
diffusion_sampler = DiffusionSampler(
model.diffusion.diffusion,
sampler=ADPM2Sampler(),
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
clamp=False
)
def inference(text=None, ref_s=None, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, rate_of_speech=1.):
tokens = textclenaer(text)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = diffusion_sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x = model.predictor.lstm(d)
x_mod = model.predictor.prepare_projection(x)
duration = model.predictor.duration_proj(x_mod)
duration = torch.sigmoid(duration).sum(axis=-1) / rate_of_speech
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-50]
def Longform(text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1, rate_of_speech=1.0):
tokens = textclenaer(text)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
text_mask = length_to_mask(input_lengths).to(device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
s_pred = diffusion_sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device),
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s,
num_steps=diffusion_steps).squeeze(1)
if s_prev is not None:
# convex combination of previous and current style
s_pred = t * s_prev + (1 - t) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
s_pred = torch.cat([ref, s], dim=-1)
d = model.predictor.text_encoder(d_en,
s, input_lengths, text_mask)
x = model.predictor.lstm(d)
x_mod = model.predictor.prepare_projection(x) # 640 -> 512
duration = model.predictor.duration_proj(x_mod)
duration = torch.sigmoid(duration).sum(axis=-1) / rate_of_speech
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = model.decoder(asr,
F0_pred, N_pred, ref.squeeze().unsqueeze(0))
return out.squeeze().cpu().numpy()[..., :-100], s_pred
def trim_long_silences(wav_data, sample_rate=24000, silence_threshold=0.01, min_silence_duration=0.8):
min_silence_samples = int(min_silence_duration * sample_rate)
envelope = np.abs(wav_data)
silence_mask = envelope < silence_threshold
silence_changes = np.diff(silence_mask.astype(int))
silence_starts = np.where(silence_changes == 1)[0] + 1
silence_ends = np.where(silence_changes == -1)[0] + 1
if silence_mask[0]:
silence_starts = np.concatenate(([0], silence_starts))
if silence_mask[-1]:
silence_ends = np.concatenate((silence_ends, [len(wav_data)]))
if len(silence_starts) == 0 or len(silence_ends) == 0:
return wav_data
processed_segments = []
last_end = 0
for start, end in zip(silence_starts, silence_ends):
processed_segments.append(wav_data[last_end:start])
silence_duration = end - start
if silence_duration > min_silence_samples:
silence_segment = np.zeros(min_silence_samples)
fade_samples = min(1000, min_silence_samples // 4)
fade_in = np.linspace(0, 1, fade_samples)
fade_out = np.linspace(1, 0, fade_samples)
silence_segment[:fade_samples] *= fade_in
silence_segment[-fade_samples:] *= fade_out
processed_segments.append(silence_segment)
else:
processed_segments.append(wav_data[start:end])
last_end = end
if last_end < len(wav_data):
processed_segments.append(wav_data[last_end:])
return np.concatenate(processed_segments)
def merge_short_elements(lst):
i = 0
while i < len(lst):
if i > 0 and len(lst[i]) < 10:
lst[i-1] += ' ' + lst[i]
lst.pop(i)
else:
i += 1
return lst
def merge_three(text_list, maxim=2):
merged_list = []
for i in range(0, len(text_list), maxim):
merged_text = ' '.join(text_list[i:i+maxim])
merged_list.append(merged_text)
return merged_list
def merging_sentences(lst):
return merge_three(merge_short_elements(lst))
import os
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model_name = "Respair/Japanese_Phoneme_to_Grapheme_LLM"
def p2g(param):
chat_response = client.chat.completions.create(
model=model_name,
max_tokens=512,
temperature=0.1,
messages=[
{"role": "user", "content": f"convert this pronunciation back to normal japanese if you see one, otherwise copy the same thing: {param}"}]
)
result = chat_response.choices[0].message.content
# if " " in result:
# result = result.replace(" "," ")
return result.lstrip() |