File size: 12,476 Bytes
bcdb559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
print("NLTK")
import nltk
nltk.download('punkt')
print("SCIPY")
from scipy.io.wavfile import write
print("TORCH STUFF")
import torch
print("START")
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True


# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# import torch
# print(torch.cuda.device_count())
import IPython.display as ipd
import os
os.environ['CUDA_HOME'] = '/home/ubuntu/miniconda3/envs/respair/lib/python3.11/site-packages/torch/lib/include/cuda'
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

import random
random.seed(0)

import numpy as np
np.random.seed(0)

# load packages
from text_utils import TextCleaner
textclenaer = TextCleaner()


def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask




import time
import random
import yaml
from munch import Munch
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
import librosa
from nltk.tokenize import word_tokenize

from models import *
from Modules.KotoDama_sampler import tokenizer_koto_prompt, tokenizer_koto_text
from utils import *

import nltk
nltk.download('punkt_tab')

from nltk.tokenize import sent_tokenize

from konoha import SentenceTokenizer


sent_tokenizer = SentenceTokenizer()

# %matplotlib inline
to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4


def preprocess(wave):
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor

def compute_style_through_clip(path):
    wave, sr = librosa.load(path, sr=24000)
    audio, index = librosa.effects.trim(wave, top_db=30)
    if sr != 24000:
        audio = librosa.resample(audio, sr, 24000)
    mel_tensor = preprocess(audio).to(device)

    with torch.no_grad():
        ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
        ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))

    return torch.cat([ref_s, ref_p], dim=1)


def Kotodama_Prompter(model, text, device):
    
    with torch.no_grad():
        style = model.KotoDama_Prompt(**tokenizer_koto_prompt(text, return_tensors="pt").to(device))['logits']
    return style

def Kotodama_Sampler(model, text, device):
    
    with torch.no_grad():
        style = model.KotoDama_Text(**tokenizer_koto_text(text, return_tensors="pt").to(device))['logits']
    return style


device = 'cuda' if torch.cuda.is_available() else 'cpu'

config = yaml.safe_load(open("Configs/config_kanade.yml"))

# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)


KotoDama_Prompter = load_KotoDama_Prompter(path="Utils/KTD/prompt_enc/checkpoint-73285")
KotoDama_TextSampler = load_KotoDama_TextSampler(path="Utils/KTD/text_enc/checkpoint-22680")

# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)

# load BERT model
from Utils.PLBERT.util import load_plbert
BERT_path = config.get('PLBERT_dir', False)
plbert = load_plbert(BERT_path)

model_params = recursive_munch(config['model_params'])
model = build_model(model_params, text_aligner, pitch_extractor, plbert, KotoDama_Prompter, KotoDama_TextSampler)
_ = [model[key].eval() for key in model]
_ = [model[key].to(device) for key in model]

params_whole = torch.load("Models/Style_Tsukasa_v02/Top_ckpt_24khz.pth", map_location='cpu')
params = params_whole['net']


for key in model:
    if key in params:
        print('%s loaded' % key)
        try:
            model[key].load_state_dict(params[key])
        except:
            from collections import OrderedDict
            state_dict = params[key]
            new_state_dict = OrderedDict()
            for k, v in state_dict.items():
                name = k[7:] # remove `module.`
                new_state_dict[name] = v
            # load params
            model[key].load_state_dict(new_state_dict, strict=False)
#             except:
#                 _load(params[key], model[key])


_ = [model[key].eval() for key in model]


from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
diffusion_sampler = DiffusionSampler(
    model.diffusion.diffusion,
    sampler=ADPM2Sampler(),
    sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters
    clamp=False
)

def inference(text=None, ref_s=None, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, rate_of_speech=1.):

    tokens = textclenaer(text)
    tokens.insert(0, 0)
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
    
    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)

        text_mask = length_to_mask(input_lengths).to(device)

        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2) 
        


        s_pred = diffusion_sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), 
                                          embedding=bert_dur,
                                          embedding_scale=embedding_scale,
                                            features=ref_s, # reference from the same speaker as the embedding
                                             num_steps=diffusion_steps).squeeze(1)


        s = s_pred[:, 128:]
        ref = s_pred[:, :128]

        ref = alpha * ref + (1 - alpha)  * ref_s[:, :128]
        s = beta * s + (1 - beta)  * ref_s[:, 128:]

        d = model.predictor.text_encoder(d_en, 
                                         s, input_lengths, text_mask)
        
  

        x = model.predictor.lstm(d)
        x_mod =  model.predictor.prepare_projection(x) 
        duration = model.predictor.duration_proj(x_mod) 


        duration = torch.sigmoid(duration).sum(axis=-1) / rate_of_speech
        
        pred_dur = torch.round(duration.squeeze()).clamp(min=1) 



        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))



        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

        asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))


        out = model.decoder(asr, 
                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))
    
        
    return out.squeeze().cpu().numpy()[..., :-50] 


def Longform(text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1, rate_of_speech=1.0):
    

    tokens = textclenaer(text)
    tokens.insert(0, 0)
    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
    
    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
        text_mask = length_to_mask(input_lengths).to(device)

        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2) 

        s_pred = diffusion_sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), 
                                          embedding=bert_dur,
                                          embedding_scale=embedding_scale,
                                            features=ref_s, 
                                             num_steps=diffusion_steps).squeeze(1)
        
        if s_prev is not None:
            # convex combination of previous and current style
            s_pred = t * s_prev + (1 - t) * s_pred
        
        s = s_pred[:, 128:]
        ref = s_pred[:, :128]
        
        ref = alpha * ref + (1 - alpha)  * ref_s[:, :128]
        s = beta * s + (1 - beta)  * ref_s[:, 128:]

        s_pred = torch.cat([ref, s], dim=-1)

        d = model.predictor.text_encoder(d_en, 
                                         s, input_lengths, text_mask)

        x = model.predictor.lstm(d)
        x_mod =  model.predictor.prepare_projection(x) # 640 -> 512
        duration = model.predictor.duration_proj(x_mod)

        duration = torch.sigmoid(duration).sum(axis=-1) / rate_of_speech
        pred_dur = torch.round(duration.squeeze()).clamp(min=1) 


        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))

        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)

        asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))

        out = model.decoder(asr, 
                                F0_pred, N_pred, ref.squeeze().unsqueeze(0))
    
        
    return out.squeeze().cpu().numpy()[..., :-100], s_pred 



def trim_long_silences(wav_data, sample_rate=24000, silence_threshold=0.01, min_silence_duration=0.8):

    
    min_silence_samples = int(min_silence_duration * sample_rate)
    
    
    envelope = np.abs(wav_data)
    
    
    silence_mask = envelope < silence_threshold
    
    
    silence_changes = np.diff(silence_mask.astype(int))
    silence_starts = np.where(silence_changes == 1)[0] + 1
    silence_ends = np.where(silence_changes == -1)[0] + 1
    
    
    if silence_mask[0]:
        silence_starts = np.concatenate(([0], silence_starts))
    if silence_mask[-1]:
        silence_ends = np.concatenate((silence_ends, [len(wav_data)]))
    
    
    if len(silence_starts) == 0 or len(silence_ends) == 0:
        return wav_data
    
    processed_segments = []
    last_end = 0
    
    for start, end in zip(silence_starts, silence_ends):
        
        processed_segments.append(wav_data[last_end:start])
        
        
        silence_duration = end - start
        
        if silence_duration > min_silence_samples:
            
            silence_segment = np.zeros(min_silence_samples)
          
            fade_samples = min(1000, min_silence_samples // 4)
            fade_in = np.linspace(0, 1, fade_samples)
            fade_out = np.linspace(1, 0, fade_samples)
            silence_segment[:fade_samples] *= fade_in
            silence_segment[-fade_samples:] *= fade_out
            processed_segments.append(silence_segment)
        else:
           
            processed_segments.append(wav_data[start:end])
        
        last_end = end
    

    if last_end < len(wav_data):
        processed_segments.append(wav_data[last_end:])
    
  
    return np.concatenate(processed_segments)


def merge_short_elements(lst):
    i = 0
    while i < len(lst):
        if i > 0 and len(lst[i]) < 10:
            lst[i-1] += ' ' + lst[i]
            lst.pop(i)
        else:
            i += 1
    return lst


def merge_three(text_list, maxim=2):

    merged_list = []
    for i in range(0, len(text_list), maxim):
        merged_text = ' '.join(text_list[i:i+maxim])
        merged_list.append(merged_text)
    return merged_list


def merging_sentences(lst):
    return merge_three(merge_short_elements(lst))


import os


from openai import OpenAI


openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

model_name = "Respair/Japanese_Phoneme_to_Grapheme_LLM"


def p2g(param):

    chat_response = client.chat.completions.create(

        model=model_name,
        max_tokens=512,
        temperature=0.1,


        messages=[
            
            {"role": "user", "content": f"convert this pronunciation back to normal japanese if you see one, otherwise copy the same thing: {param}"}]
    )   
    
    result = chat_response.choices[0].message.content
    # if "  " in result:
    #     result = result.replace("  "," ")

    return result.lstrip()