Respair's picture
Upload folder using huggingface_hub
bcdb559 verified
raw
history blame
8.42 kB
from abc import ABC, abstractmethod
from math import floor
from typing import Any, Callable, Optional, Sequence, Tuple, Union
import torch
from einops import pack, rearrange, unpack
from torch import Generator, Tensor, nn
from .components import AppendChannelsPlugin, MelSpectrogram
from .diffusion import ARVDiffusion, ARVSampler, VDiffusion, VSampler
from .utils import (
closest_power_2,
default,
downsample,
exists,
groupby,
randn_like,
upsample,
)
class DiffusionModel(nn.Module):
def __init__(
self,
net_t: Callable,
diffusion_t: Callable = VDiffusion,
sampler_t: Callable = VSampler,
loss_fn: Callable = torch.nn.functional.mse_loss,
dim: int = 1,
**kwargs,
):
super().__init__()
diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
sampler_kwargs, kwargs = groupby("sampler_", kwargs)
self.net = net_t(dim=dim, **kwargs)
self.diffusion = diffusion_t(net=self.net, loss_fn=loss_fn, **diffusion_kwargs)
self.sampler = sampler_t(net=self.net, **sampler_kwargs)
def forward(self, *args, **kwargs) -> Tensor:
return self.diffusion(*args, **kwargs)
@torch.no_grad()
def sample(self, *args, **kwargs) -> Tensor:
return self.sampler(*args, **kwargs)
class EncoderBase(nn.Module, ABC):
"""Abstract class for DiffusionAE encoder"""
@abstractmethod
def __init__(self):
super().__init__()
self.out_channels = None
self.downsample_factor = None
class AdapterBase(nn.Module, ABC):
"""Abstract class for DiffusionAE encoder"""
@abstractmethod
def encode(self, x: Tensor) -> Tensor:
pass
@abstractmethod
def decode(self, x: Tensor) -> Tensor:
pass
class DiffusionAE(DiffusionModel):
"""Diffusion Auto Encoder"""
def __init__(
self,
in_channels: int,
channels: Sequence[int],
encoder: EncoderBase,
inject_depth: int,
latent_factor: Optional[int] = None,
adapter: Optional[AdapterBase] = None,
**kwargs,
):
context_channels = [0] * len(channels)
context_channels[inject_depth] = encoder.out_channels
super().__init__(
in_channels=in_channels,
channels=channels,
context_channels=context_channels,
**kwargs,
)
self.in_channels = in_channels
self.encoder = encoder
self.inject_depth = inject_depth
# Optional custom latent factor and adapter
self.latent_factor = default(latent_factor, self.encoder.downsample_factor)
self.adapter = adapter.requires_grad_(False) if exists(adapter) else None
def forward( # type: ignore
self, x: Tensor, with_info: bool = False, **kwargs
) -> Union[Tensor, Tuple[Tensor, Any]]:
# Encode input to latent channels
latent, info = self.encode(x, with_info=True)
channels = [None] * self.inject_depth + [latent]
# Adapt input to diffusion if adapter provided
x = self.adapter.encode(x) if exists(self.adapter) else x
# Compute diffusion loss
loss = super().forward(x, channels=channels, **kwargs)
return (loss, info) if with_info else loss
def encode(self, *args, **kwargs):
return self.encoder(*args, **kwargs)
@torch.no_grad()
def decode(
self, latent: Tensor, generator: Optional[Generator] = None, **kwargs
) -> Tensor:
b = latent.shape[0]
noise_length = closest_power_2(latent.shape[2] * self.latent_factor)
# Compute noise by inferring shape from latent length
noise = torch.randn(
(b, self.in_channels, noise_length),
device=latent.device,
dtype=latent.dtype,
generator=generator,
)
# Compute context from latent
channels = [None] * self.inject_depth + [latent] # type: ignore
# Decode by sampling while conditioning on latent channels
out = super().sample(noise, channels=channels, **kwargs)
# Decode output with adapter if provided
return self.adapter.decode(out) if exists(self.adapter) else out
class DiffusionUpsampler(DiffusionModel):
def __init__(
self,
in_channels: int,
upsample_factor: int,
net_t: Callable,
**kwargs,
):
self.upsample_factor = upsample_factor
super().__init__(
net_t=AppendChannelsPlugin(net_t, channels=in_channels),
in_channels=in_channels,
**kwargs,
)
def reupsample(self, x: Tensor) -> Tensor:
x = x.clone()
x = downsample(x, factor=self.upsample_factor)
x = upsample(x, factor=self.upsample_factor)
return x
def forward(self, x: Tensor, *args, **kwargs) -> Tensor: # type: ignore
reupsampled = self.reupsample(x)
return super().forward(x, *args, append_channels=reupsampled, **kwargs)
@torch.no_grad()
def sample( # type: ignore
self, downsampled: Tensor, generator: Optional[Generator] = None, **kwargs
) -> Tensor:
reupsampled = upsample(downsampled, factor=self.upsample_factor)
noise = randn_like(reupsampled, generator=generator)
return super().sample(noise, append_channels=reupsampled, **kwargs)
class DiffusionVocoder(DiffusionModel):
def __init__(
self,
net_t: Callable,
mel_channels: int,
mel_n_fft: int,
mel_hop_length: Optional[int] = None,
mel_win_length: Optional[int] = None,
in_channels: int = 1, # Ignored: channels are automatically batched.
**kwargs,
):
mel_hop_length = default(mel_hop_length, floor(mel_n_fft) // 4)
mel_win_length = default(mel_win_length, mel_n_fft)
mel_kwargs, kwargs = groupby("mel_", kwargs)
super().__init__(
net_t=AppendChannelsPlugin(net_t, channels=1),
in_channels=1,
**kwargs,
)
self.to_spectrogram = MelSpectrogram(
n_fft=mel_n_fft,
hop_length=mel_hop_length,
win_length=mel_win_length,
n_mel_channels=mel_channels,
**mel_kwargs,
)
self.to_flat = nn.ConvTranspose1d(
in_channels=mel_channels,
out_channels=1,
kernel_size=mel_win_length,
stride=mel_hop_length,
padding=(mel_win_length - mel_hop_length) // 2,
bias=False,
)
def forward(self, x: Tensor, *args, **kwargs) -> Tensor: # type: ignore
# Get spectrogram, pack channels and flatten
spectrogram = rearrange(self.to_spectrogram(x), "b c f l -> (b c) f l")
spectrogram_flat = self.to_flat(spectrogram)
# Pack wave channels
x = rearrange(x, "b c t -> (b c) 1 t")
return super().forward(x, *args, append_channels=spectrogram_flat, **kwargs)
@torch.no_grad()
def sample( # type: ignore
self, spectrogram: Tensor, generator: Optional[Generator] = None, **kwargs
) -> Tensor: # type: ignore
# Pack channels and flatten spectrogram
spectrogram, ps = pack([spectrogram], "* f l")
spectrogram_flat = self.to_flat(spectrogram)
# Get start noise and sample
noise = randn_like(spectrogram_flat, generator=generator)
waveform = super().sample(noise, append_channels=spectrogram_flat, **kwargs)
# Unpack wave channels
waveform = rearrange(waveform, "... 1 t -> ... t")
waveform = unpack(waveform, ps, "* t")[0]
return waveform
class DiffusionAR(DiffusionModel):
def __init__(
self,
in_channels: int,
length: int,
num_splits: int,
diffusion_t: Callable = ARVDiffusion,
sampler_t: Callable = ARVSampler,
**kwargs,
):
super().__init__(
in_channels=in_channels + 1,
out_channels=in_channels,
diffusion_t=diffusion_t,
diffusion_length=length,
diffusion_num_splits=num_splits,
sampler_t=sampler_t,
sampler_in_channels=in_channels,
sampler_length=length,
sampler_num_splits=num_splits,
use_time_conditioning=False,
use_modulation=False,
**kwargs,
)