Respair's picture
Upload folder using huggingface_hub
bcdb559 verified
raw
history blame
12.8 kB
from math import pi
from typing import Any, Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from torch import Tensor
from tqdm import tqdm
from .utils import default
""" Distributions """
class Distribution:
"""Interface used by different distributions"""
def __call__(self, num_samples: int, device: torch.device):
raise NotImplementedError()
class UniformDistribution(Distribution):
def __init__(self, vmin: float = 0.0, vmax: float = 1.0):
super().__init__()
self.vmin, self.vmax = vmin, vmax
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
vmax, vmin = self.vmax, self.vmin
return (vmax - vmin) * torch.rand(num_samples, device=device) + vmin
""" Diffusion Methods """
def pad_dims(x: Tensor, ndim: int) -> Tensor:
# Pads additional ndims to the right of the tensor
return x.view(*x.shape, *((1,) * ndim))
def clip(x: Tensor, dynamic_threshold: float = 0.0):
if dynamic_threshold == 0.0:
return x.clamp(-1.0, 1.0)
else:
# Dynamic thresholding
# Find dynamic threshold quantile for each batch
x_flat = rearrange(x, "b ... -> b (...)")
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
# Clamp to a min of 1.0
scale.clamp_(min=1.0)
# Clamp all values and scale
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
x = x.clamp(-scale, scale) / scale
return x
def extend_dim(x: Tensor, dim: int):
# e.g. if dim = 4: shape [b] => [b, 1, 1, 1],
return x.view(*x.shape + (1,) * (dim - x.ndim))
class Diffusion(nn.Module):
"""Interface used by different diffusion methods"""
pass
class VDiffusion(Diffusion):
def __init__(
self, net: nn.Module, sigma_distribution: Distribution = UniformDistribution(), loss_fn: Any = F.mse_loss
):
super().__init__()
self.net = net
self.sigma_distribution = sigma_distribution
self.loss_fn = loss_fn
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
angle = sigmas * pi / 2
alpha, beta = torch.cos(angle), torch.sin(angle)
return alpha, beta
def forward(self, x: Tensor, **kwargs) -> Tensor: # type: ignore
batch_size, device = x.shape[0], x.device
# Sample amount of noise to add for each batch element
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
sigmas_batch = extend_dim(sigmas, dim=x.ndim)
# Get noise
noise = torch.randn_like(x)
# Combine input and noise weighted by half-circle
alphas, betas = self.get_alpha_beta(sigmas_batch)
x_noisy = alphas * x + betas * noise
v_target = alphas * noise - betas * x
# Predict velocity and return loss
v_pred = self.net(x_noisy, sigmas, **kwargs)
return self.loss_fn(v_pred, v_target)
class ARVDiffusion(Diffusion):
def __init__(self, net: nn.Module, length: int, num_splits: int, loss_fn: Any = F.mse_loss):
super().__init__()
assert length % num_splits == 0, "length must be divisible by num_splits"
self.net = net
self.length = length
self.num_splits = num_splits
self.split_length = length // num_splits
self.loss_fn = loss_fn
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
angle = sigmas * pi / 2
alpha, beta = torch.cos(angle), torch.sin(angle)
return alpha, beta
def forward(self, x: Tensor, **kwargs) -> Tensor:
"""Returns diffusion loss of v-objective with different noises per split"""
b, _, t, device, dtype = *x.shape, x.device, x.dtype
assert t == self.length, "input length must match length"
# Sample amount of noise to add for each split
sigmas = torch.rand((b, 1, self.num_splits), device=device, dtype=dtype)
sigmas = repeat(sigmas, "b 1 n -> b 1 (n l)", l=self.split_length)
# Get noise
noise = torch.randn_like(x)
# Combine input and noise weighted by half-circle
alphas, betas = self.get_alpha_beta(sigmas)
x_noisy = alphas * x + betas * noise
v_target = alphas * noise - betas * x
# Sigmas will be provided as additional channel
channels = torch.cat([x_noisy, sigmas], dim=1)
# Predict velocity and return loss
v_pred = self.net(channels, **kwargs)
return self.loss_fn(v_pred, v_target)
""" Schedules """
class Schedule(nn.Module):
"""Interface used by different sampling schedules"""
def forward(self, num_steps: int, device: torch.device) -> Tensor:
raise NotImplementedError()
class LinearSchedule(Schedule):
def __init__(self, start: float = 1.0, end: float = 0.0):
super().__init__()
self.start, self.end = start, end
def forward(self, num_steps: int, device: Any) -> Tensor:
return torch.linspace(self.start, self.end, num_steps, device=device)
""" Samplers """
class Sampler(nn.Module):
pass
class VSampler(Sampler):
diffusion_types = [VDiffusion]
def __init__(self, net: nn.Module, schedule: Schedule = LinearSchedule()):
super().__init__()
self.net = net
self.schedule = schedule
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
angle = sigmas * pi / 2
alpha, beta = torch.cos(angle), torch.sin(angle)
return alpha, beta
@torch.no_grad()
def forward( # type: ignore
self, x_noisy: Tensor, num_steps: int, show_progress: bool = False, **kwargs
) -> Tensor:
b = x_noisy.shape[0]
sigmas = self.schedule(num_steps + 1, device=x_noisy.device)
sigmas = repeat(sigmas, "i -> i b", b=b)
sigmas_batch = extend_dim(sigmas, dim=x_noisy.ndim + 1)
alphas, betas = self.get_alpha_beta(sigmas_batch)
progress_bar = tqdm(range(num_steps), disable=not show_progress)
for i in progress_bar:
v_pred = self.net(x_noisy, sigmas[i], **kwargs)
x_pred = alphas[i] * x_noisy - betas[i] * v_pred
noise_pred = betas[i] * x_noisy + alphas[i] * v_pred
x_noisy = alphas[i + 1] * x_pred + betas[i + 1] * noise_pred
progress_bar.set_description(f"Sampling (noise={sigmas[i+1,0]:.2f})")
return x_noisy
class ARVSampler(Sampler):
def __init__(self, net: nn.Module, in_channels: int, length: int, num_splits: int):
super().__init__()
assert length % num_splits == 0, "length must be divisible by num_splits"
self.length = length
self.in_channels = in_channels
self.num_splits = num_splits
self.split_length = length // num_splits
self.net = net
@property
def device(self):
return next(self.net.parameters()).device
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
angle = sigmas * pi / 2
alpha = torch.cos(angle)
beta = torch.sin(angle)
return alpha, beta
def get_sigmas_ladder(self, num_items: int, num_steps_per_split: int) -> Tensor:
b, n, l, i = num_items, self.num_splits, self.split_length, num_steps_per_split
n_half = n // 2 # Only half ladder, rest is zero, to leave some context
sigmas = torch.linspace(1, 0, i * n_half, device=self.device)
sigmas = repeat(sigmas, "(n i) -> i b 1 (n l)", b=b, l=l, n=n_half)
sigmas = torch.flip(sigmas, dims=[-1]) # Lowest noise level first
sigmas = F.pad(sigmas, pad=[0, 0, 0, 0, 0, 0, 0, 1]) # Add index i+1
sigmas[-1, :, :, l:] = sigmas[0, :, :, :-l] # Loop back at index i+1
return torch.cat([torch.zeros_like(sigmas), sigmas], dim=-1)
def sample_loop(
self, current: Tensor, sigmas: Tensor, show_progress: bool = False, **kwargs
) -> Tensor:
num_steps = sigmas.shape[0] - 1
alphas, betas = self.get_alpha_beta(sigmas)
progress_bar = tqdm(range(num_steps), disable=not show_progress)
for i in progress_bar:
channels = torch.cat([current, sigmas[i]], dim=1)
v_pred = self.net(channels, **kwargs)
x_pred = alphas[i] * current - betas[i] * v_pred
noise_pred = betas[i] * current + alphas[i] * v_pred
current = alphas[i + 1] * x_pred + betas[i + 1] * noise_pred
progress_bar.set_description(f"Sampling (noise={sigmas[i+1,0,0,0]:.2f})")
return current
def sample_start(self, num_items: int, num_steps: int, **kwargs) -> Tensor:
b, c, t = num_items, self.in_channels, self.length
# Same sigma schedule over all chunks
sigmas = torch.linspace(1, 0, num_steps + 1, device=self.device)
sigmas = repeat(sigmas, "i -> i b 1 t", b=b, t=t)
noise = torch.randn((b, c, t), device=self.device) * sigmas[0]
# Sample start
return self.sample_loop(current=noise, sigmas=sigmas, **kwargs)
@torch.no_grad()
def forward(
self,
num_items: int,
num_chunks: int,
num_steps: int,
start: Optional[Tensor] = None,
show_progress: bool = False,
**kwargs,
) -> Tensor:
assert_message = f"required at least {self.num_splits} chunks"
assert num_chunks >= self.num_splits, assert_message
# Sample initial chunks
start = self.sample_start(num_items=num_items, num_steps=num_steps, **kwargs)
# Return start if only num_splits chunks
if num_chunks == self.num_splits:
return start
# Get sigmas for autoregressive ladder
b, n = num_items, self.num_splits
assert num_steps >= n, "num_steps must be greater than num_splits"
sigmas = self.get_sigmas_ladder(
num_items=b,
num_steps_per_split=num_steps // self.num_splits,
)
alphas, betas = self.get_alpha_beta(sigmas)
# Noise start to match ladder and set starting chunks
start_noise = alphas[0] * start + betas[0] * torch.randn_like(start)
chunks = list(start_noise.chunk(chunks=n, dim=-1))
# Loop over ladder shifts
num_shifts = num_chunks # - self.num_splits
progress_bar = tqdm(range(num_shifts), disable=not show_progress)
for j in progress_bar:
# Decrease ladder noise of last n chunks
updated = self.sample_loop(
current=torch.cat(chunks[-n:], dim=-1), sigmas=sigmas, **kwargs
)
# Update chunks
chunks[-n:] = list(updated.chunk(chunks=n, dim=-1))
# Add fresh noise chunk
shape = (b, self.in_channels, self.split_length)
chunks += [torch.randn(shape, device=self.device)]
return torch.cat(chunks[:num_chunks], dim=-1)
""" Inpainters """
class Inpainter(nn.Module):
pass
class VInpainter(Inpainter):
diffusion_types = [VDiffusion]
def __init__(self, net: nn.Module, schedule: Schedule = LinearSchedule()):
super().__init__()
self.net = net
self.schedule = schedule
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
angle = sigmas * pi / 2
alpha, beta = torch.cos(angle), torch.sin(angle)
return alpha, beta
@torch.no_grad()
def forward( # type: ignore
self,
source: Tensor,
mask: Tensor,
num_steps: int,
num_resamples: int,
show_progress: bool = False,
x_noisy: Optional[Tensor] = None,
**kwargs,
) -> Tensor:
x_noisy = default(x_noisy, lambda: torch.randn_like(source))
b = x_noisy.shape[0]
sigmas = self.schedule(num_steps + 1, device=x_noisy.device)
sigmas = repeat(sigmas, "i -> i b", b=b)
sigmas_batch = extend_dim(sigmas, dim=x_noisy.ndim + 1)
alphas, betas = self.get_alpha_beta(sigmas_batch)
progress_bar = tqdm(range(num_steps), disable=not show_progress)
for i in progress_bar:
for r in range(num_resamples):
v_pred = self.net(x_noisy, sigmas[i], **kwargs)
x_pred = alphas[i] * x_noisy - betas[i] * v_pred
noise_pred = betas[i] * x_noisy + alphas[i] * v_pred
# Renoise to current noise level if resampling
j = r == num_resamples - 1
x_noisy = alphas[i + j] * x_pred + betas[i + j] * noise_pred
s_noisy = alphas[i + j] * source + betas[i + j] * torch.randn_like(
source
)
x_noisy = s_noisy * mask + x_noisy * ~mask
progress_bar.set_description(f"Inpainting (noise={sigmas[i+1,0]:.2f})")
return x_noisy