import os
import os.path as osp

import copy
import math

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm

from Utils.ASR.models import ASRCNN
from Utils.JDC.model import JDCNet


from transformers import AutoModelForSequenceClassification, PreTrainedModel, AutoConfig, AutoModel, AutoTokenizer

from Modules.KotoDama_sampler import KotoDama_Prompt, KotoDama_Text
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
from Modules.diffusion.modules import Transformer1d, StyleTransformer1d
from Modules.diffusion.diffusion import AudioDiffusionConditional
from Modules.diffusion.audio_diffusion_pytorch import DiffusionModel, UNetV0, VDiffusion, VSampler, DiffusionUpsampler

from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator

from munch import Munch
import yaml

# from hflayers import Hopfield, HopfieldPooling, HopfieldLayer
# from hflayers.auxiliary.data import BitPatternSet

# Import auxiliary modules.
from distutils.version import LooseVersion
from typing import List, Tuple

import math
# from liger_kernel.ops.layer_norm import LigerLayerNormFunction
# from liger_kernel.transformers.experimental.embedding import nn.Embedding

import torch

from xlstm import (
    xLSTMBlockStack,
    xLSTMBlockStackConfig,
    mLSTMBlockConfig,
    mLSTMLayerConfig,
    sLSTMBlockConfig,
    sLSTMLayerConfig,
    FeedForwardConfig,
)



class LearnedDownSample(nn.Module):
    def __init__(self, layer_type, dim_in):
        super().__init__()
        self.layer_type = layer_type

        if self.layer_type == 'none':
            self.conv = nn.Identity()
        elif self.layer_type == 'timepreserve':
            self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
        elif self.layer_type == 'half':
            self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
        else:
            raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
            
    def forward(self, x):
        return self.conv(x)

class LearnedUpSample(nn.Module):
    def __init__(self, layer_type, dim_in):
        super().__init__()
        self.layer_type = layer_type
        
        if self.layer_type == 'none':
            self.conv = nn.Identity()
        elif self.layer_type == 'timepreserve':
            self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
        elif self.layer_type == 'half':
            self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
        else:
            raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)


    def forward(self, x):
        return self.conv(x)

class DownSample(nn.Module):
    def __init__(self, layer_type):
        super().__init__()
        self.layer_type = layer_type

    def forward(self, x):
        if self.layer_type == 'none':
            return x
        elif self.layer_type == 'timepreserve':
            return F.avg_pool2d(x, (2, 1))
        elif self.layer_type == 'half':
            if x.shape[-1] % 2 != 0:
                x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
            return F.avg_pool2d(x, 2)
        else:
            raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)


class UpSample(nn.Module):
    def __init__(self, layer_type):
        super().__init__()
        self.layer_type = layer_type

    def forward(self, x):
        if self.layer_type == 'none':
            return x
        elif self.layer_type == 'timepreserve':
            return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
        elif self.layer_type == 'half':
            return F.interpolate(x, scale_factor=2, mode='nearest')
        else:
            raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)


class ResBlk(nn.Module):
    def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
                 normalize=False, downsample='none'):
        super().__init__()
        self.actv = actv
        self.normalize = normalize
        self.downsample = DownSample(downsample)
        self.downsample_res = LearnedDownSample(downsample, dim_in)
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out)

    def _build_weights(self, dim_in, dim_out):
        self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
        self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
        if self.normalize:
            self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
            self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
        if self.learned_sc:
            self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))

    def _shortcut(self, x):
        if self.learned_sc:
            x = self.conv1x1(x)
        if self.downsample:
            x = self.downsample(x)
        return x

    def _residual(self, x):
        if self.normalize:
            x = self.norm1(x)
        x = self.actv(x)
        x = self.conv1(x)
        x = self.downsample_res(x)
        if self.normalize:
            x = self.norm2(x)
        x = self.actv(x)
        x = self.conv2(x)
        return x

    def forward(self, x):
        x = self._shortcut(x) + self._residual(x)
        return x / math.sqrt(2)  # unit variance

class StyleEncoder(nn.Module):
    def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
        super().__init__()
        blocks = []
        blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]

        repeat_num = 4
        for _ in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            blocks += [ResBlk(dim_in, dim_out, downsample='half')]
            dim_in = dim_out

        blocks += [nn.LeakyReLU(0.2)]
        blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
        blocks += [nn.AdaptiveAvgPool2d(1)]
        blocks += [nn.LeakyReLU(0.2)]
        self.shared = nn.Sequential(*blocks)

        self.unshared = nn.Linear(dim_out, style_dim)

    def forward(self, x):
        h = self.shared(x)
        h = h.view(h.size(0), -1)
        s = self.unshared(h)
    
        return s

class LinearNorm(torch.nn.Module):
    def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
        super(LinearNorm, self).__init__()
        self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)

        torch.nn.init.xavier_uniform_(
            self.linear_layer.weight,
            gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, x):
        return self.linear_layer(x)

class Discriminator2d(nn.Module):
    def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
        super().__init__()
        blocks = []
        blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]

        for lid in range(repeat_num):
            dim_out = min(dim_in*2, max_conv_dim)
            blocks += [ResBlk(dim_in, dim_out, downsample='half')]
            dim_in = dim_out

        blocks += [nn.LeakyReLU(0.2)]
        blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
        blocks += [nn.LeakyReLU(0.2)]
        blocks += [nn.AdaptiveAvgPool2d(1)]
        blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
        self.main = nn.Sequential(*blocks)

    def get_feature(self, x):
        features = []
        for l in self.main:
            x = l(x)
            features.append(x) 
        out = features[-1]
        out = out.view(out.size(0), -1)  # (batch, num_domains)
        return out, features

    def forward(self, x):
        out, features = self.get_feature(x)
        out = out.squeeze()  # (batch)
        return out, features

class ResBlk1d(nn.Module):
    def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
                 normalize=False, downsample='none', dropout_p=0.2):
        super().__init__()
        self.actv = actv
        self.normalize = normalize
        self.downsample_type = downsample
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out)
        self.dropout_p = dropout_p
        
        if self.downsample_type == 'none':
            self.pool = nn.Identity()
        else:
            self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))

    def _build_weights(self, dim_in, dim_out):
        self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
        self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
        if self.normalize:
            self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
            self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
        if self.learned_sc:
            self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))

    def downsample(self, x):
        if self.downsample_type == 'none':
            return x
        else:
            if x.shape[-1] % 2 != 0:
                x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
            return F.avg_pool1d(x, 2)

    def _shortcut(self, x):
        if self.learned_sc:
            x = self.conv1x1(x)
        x = self.downsample(x)
        return x

    def _residual(self, x):
        if self.normalize:
            x = self.norm1(x)
        x = self.actv(x)
        x = F.dropout(x, p=self.dropout_p, training=self.training)
        
        x = self.conv1(x)
        x = self.pool(x)
        if self.normalize:
            x = self.norm2(x)
            
        x = self.actv(x)
        x = F.dropout(x, p=self.dropout_p, training=self.training)
        
        x = self.conv2(x)
        return x

    def forward(self, x):
        x = self._shortcut(x) + self._residual(x)
        return x / math.sqrt(2)  # unit variance

class LayerNorm(nn.Module):
    def __init__(self, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.gamma = nn.Parameter(torch.ones(channels))
        self.beta = nn.Parameter(torch.zeros(channels))

    def forward(self, x):
        x = x.transpose(1, -1)
        x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
        return x.transpose(1, -1)


class TextEncoder(nn.Module):
    def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
        super().__init__()
        self.embedding = nn.Embedding(n_symbols, channels)
        
        self.prepare_projection=LinearNorm(channels,channels // 2)
        self.post_projection=LinearNorm(channels // 2,channels)
        self.cfg = xLSTMBlockStackConfig(
                                    mlstm_block=mLSTMBlockConfig(
                                        mlstm=mLSTMLayerConfig(
                                            conv1d_kernel_size=4, qkv_proj_blocksize=4, num_heads=4
                                        )
                                    ),
                                    # slstm_block=sLSTMBlockConfig(
                                    #     slstm=sLSTMLayerConfig(
                                    #         backend="cuda",
                                    #         num_heads=4,
                                    #         conv1d_kernel_size=4,
                                    #         bias_init="powerlaw_blockdependent",
                                    #     ),
                                    #     feedforward=FeedForwardConfig(proj_factor=1.3, act_fn="gelu"),
                                    # ),
                                    context_length=channels,
                                    num_blocks=8,
                                    embedding_dim=channels // 2,
                                    # slstm_at=[1],

                                )

      

        padding = (kernel_size - 1) // 2
        self.cnn = nn.ModuleList()
        for _ in range(depth):
            self.cnn.append(nn.Sequential(
                
                weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
                LayerNorm(channels),
                actv,
                nn.Dropout(0.2),
            ))
        # self.cnn = nn.Sequential(*self.cnn)


        self.lstm =  xLSTMBlockStack(self.cfg)
    def forward(self, x, input_lengths, m):
        
        x = self.embedding(x)  # [B, T, emb]
 
  
        x = x.transpose(1, 2)  # [B, emb, T]
        m = m.to(input_lengths.device).unsqueeze(1)
        x.masked_fill_(m, 0.0)
        
        for c in self.cnn:
            x = c(x)
            x.masked_fill_(m, 0.0)
            
        x = x.transpose(1, 2)  # [B, T, chn]
        

        input_lengths = input_lengths.cpu().numpy()
        

        
        x = self.prepare_projection(x)

        # x = nn.utils.rnn.pack_padded_sequence(
        #     x, input_lengths, batch_first=True, enforce_sorted=False)

        # self.lstm.flatten_parameters()
        x = self.lstm(x)
        
        x = self.post_projection(x)
        # x, _ = nn.utils.rnn.pad_packed_sequence(
        #     x, batch_first=True)
                
        x = x.transpose(-1, -2)
#         x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])

#         x_pad[:, :, :x.shape[-1]] = x
#         x = x_pad.to(x.device)
        
        x.masked_fill_(m, 0.0)
        
        return x 

    def inference(self, x):
        x = self.embedding(x)
        x = x.transpose(1, 2)
        x = self.cnn(x)
        x = x.transpose(1, 2)
        # self.lstm.flatten_parameters()
        x = self.lstm(x)
        return x
    
    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask
    


class AdaIN1d(nn.Module):
    def __init__(self, style_dim, num_features):
        super().__init__()
        self.norm = nn.InstanceNorm1d(num_features, affine=False)
        self.fc = nn.Linear(style_dim, num_features*2)

    def forward(self, x, s):
        h = self.fc(s)

        h = h.view(h.size(0), h.size(1), 1)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        return (1 + gamma) * self.norm(x) + beta

class UpSample1d(nn.Module):
    def __init__(self, layer_type):
        super().__init__()
        self.layer_type = layer_type

    def forward(self, x):
        if self.layer_type == 'none':
            return x
        else:
            return F.interpolate(x, scale_factor=2, mode='nearest')

class AdainResBlk1d(nn.Module):
    def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
                 upsample='none', dropout_p=0.0):
        super().__init__()
        self.actv = actv
        self.upsample_type = upsample
        self.upsample = UpSample1d(upsample)
        self.learned_sc = dim_in != dim_out
        self._build_weights(dim_in, dim_out, style_dim)
        self.dropout = nn.Dropout(dropout_p)
        
        if upsample == 'none':
            self.pool = nn.Identity()
        else:
            self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
        
        
    def _build_weights(self, dim_in, dim_out, style_dim):
        self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
        self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
        self.norm1 = AdaIN1d(style_dim, dim_in)
        self.norm2 = AdaIN1d(style_dim, dim_out)
        if self.learned_sc:
            self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))

    def _shortcut(self, x):
        x = self.upsample(x)
        if self.learned_sc:
            x = self.conv1x1(x)
        return x

    def _residual(self, x, s):
        x = self.norm1(x, s)
        x = self.actv(x)
        x = self.pool(x)
        x = self.conv1(self.dropout(x))
        x = self.norm2(x, s)
        x = self.actv(x)
        x = self.conv2(self.dropout(x))
        return x

    def forward(self, x, s):
        out = self._residual(x, s)
        out = (out + self._shortcut(x)) / math.sqrt(2)
        return out
    
class AdaLayerNorm(nn.Module):
    def __init__(self, style_dim, channels, eps=1e-5):
        super().__init__()
        self.channels = channels
        self.eps = eps

        self.fc = nn.Linear(style_dim, channels*2)

    def forward(self, x, s):
        x = x.transpose(-1, -2)
        x = x.transpose(1, -1)
                
        h = self.fc(s)
        h = h.view(h.size(0), h.size(1), 1)
        gamma, beta = torch.chunk(h, chunks=2, dim=1)
        gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
        
        
        x = F.layer_norm(x, (self.channels,), eps=self.eps)
        x = (1 + gamma) * x + beta
        return x.transpose(1, -1).transpose(-1, -2)

# class ProsodyPredictor(nn.Module):

#     def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
#         super().__init__() 
        
#         self.text_encoder = DurationEncoder(sty_dim=style_dim, 
#                                             d_model=d_hid,
#                                             nlayers=nlayers, 
#                                             dropout=dropout)

#         self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
#         self.duration_proj = LinearNorm(d_hid, max_dur)
        
#         self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
#         self.F0 = nn.ModuleList()
#         self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
#         self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
#         self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))

#         self.N = nn.ModuleList()
#         self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
#         self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
#         self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
        
#         self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
#         self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)


#     def forward(self, texts, style, text_lengths, alignment, m):
#         d = self.text_encoder(texts, style, text_lengths, m)
        
#         batch_size = d.shape[0]
#         text_size = d.shape[1]
        
#         # predict duration
#         input_lengths = text_lengths.cpu().numpy()
#         x = nn.utils.rnn.pack_padded_sequence(
#             d, input_lengths, batch_first=True, enforce_sorted=False)
        
#         m = m.to(text_lengths.device).unsqueeze(1)
        
#         self.lstm.flatten_parameters()
#         x, _ = self.lstm(x)
#         x, _ = nn.utils.rnn.pad_packed_sequence(
#             x, batch_first=True)
        
#         x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])

#         x_pad[:, :x.shape[1], :] = x
#         x = x_pad.to(x.device)
                
#         duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
        
#         en = (d.transpose(-1, -2) @ alignment)

#         return duration.squeeze(-1), en
    
    
class ProsodyPredictor(nn.Module):

    def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
        super().__init__() 
        
        self.cfg = xLSTMBlockStackConfig(
                                    mlstm_block=mLSTMBlockConfig(
                                        mlstm=mLSTMLayerConfig(
                                            conv1d_kernel_size=4, qkv_proj_blocksize=4, num_heads=4
                                        )
                                    ),
                                    context_length=d_hid,
                                    num_blocks=8,
                                    embedding_dim=d_hid + style_dim,
                                    

                                )

        self.cfg_pred = xLSTMBlockStackConfig(
                                    mlstm_block=mLSTMBlockConfig(
                                        mlstm=mLSTMLayerConfig(
                                            conv1d_kernel_size=4, qkv_proj_blocksize=4, num_heads=4
                                        )
                                    ),
                                    
                                    context_length=4096,
                                    num_blocks=8,
                                    embedding_dim=d_hid + style_dim,

                                )
        
        
        # self.shared = Hopfield(input_size=d_hid + style_dim,
        #                             hidden_size=d_hid // 2,
        #                             num_heads=32, 
        #                             # scaling=.75,
        #                             add_zero_association=True,
        #                             batch_first=True)
        
        # if you want to use hopfield, just comment out the block above, then hash the "self.shared below"
   
        

        
        self.text_encoder = DurationEncoder(sty_dim=style_dim, 
                                            d_model=d_hid,
                                            nlayers=nlayers, 
                                            dropout=dropout)

        
        self.lstm = xLSTMBlockStack(self.cfg)
        
        self.prepare_projection = nn.Linear(d_hid + style_dim, d_hid)
 
        self.duration_proj = LinearNorm(d_hid , max_dur)
        
        self.shared = xLSTMBlockStack(self.cfg_pred)
        
        # self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
        
        self.F0 = nn.ModuleList()
        self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))

        self.N = nn.ModuleList()
        self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
        self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
        
        self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
        self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)


    def forward(self, texts, style, text_lengths=None, alignment=None, m=None, f0=False):
        
        if f0:
            x, s = texts, style
            # x  = self.prepare_projection(x.transpose(-1, -2))
            # x = self.shared(x)
            
            x = self.shared(x.transpose(-1, -2))
            x = self.prepare_projection(x)
            
            F0 = x.transpose(-1, -2)
            for block in self.F0:
                F0 = block(F0, s)
            F0 = self.F0_proj(F0)

            N = x.transpose(-1, -2)
            for block in self.N:
                N = block(N, s)
            N = self.N_proj(N)

            return F0.squeeze(1), N.squeeze(1)
        
        else:
            # Problem is here
            d = self.text_encoder(texts, style, text_lengths, m)
            
            batch_size = d.shape[0]
            text_size = d.shape[1]
            
            # predict duration
            
            
            input_lengths = text_lengths.cpu().numpy()
        
            
            # x = nn.utils.rnn.pack_padded_sequence(
            #     d, input_lengths, batch_first=True, enforce_sorted=False)
            
            x = d # this dude can handle variable seq len so no need for padding

            
            m = m.to(text_lengths.device).unsqueeze(1)
            
            # self.lstm.flatten_parameters()
            x = self.lstm(x) # no longer using lstm
            x = self.prepare_projection(x)
            
        
            # x, _ = nn.utils.rnn.pad_packed_sequence(
            #     x, batch_first=True)

            # x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])

            # x_pad[:, :x.shape[1], :] = x
            # x = x_pad.to(x.device)
            
            x = x.transpose(-1,-2)
            x = x.permute(0,2,1)
            duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
            
            
            
            en = (d.transpose(-1, -2) @ alignment)

            return duration.squeeze(-1), en


    def F0Ntrain(self, x, s):

        
        # x  = self.prepare_projection(x.transpose(-1, -2))
        # x = self.shared(x)
        
        #### 
        x = self.shared(x.transpose(-1, -2))
        x = self.prepare_projection(x)
        

        
        F0 = x.transpose(-1, -2)

        for block in self.F0:
            F0 = block(F0, s)
        F0 = self.F0_proj(F0)

        N = x.transpose(-1, -2)
        for block in self.N:
            N = block(N, s)
        N = self.N_proj(N)
        
        return F0.squeeze(1), N.squeeze(1)
    
    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask
    
class DurationEncoder(nn.Module):

    def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
        super().__init__()
        self.lstms = nn.ModuleList()
        for _ in range(nlayers):
            self.lstms.append(nn.LSTM(d_model + sty_dim, 
                                 d_model // 2, 
                                 num_layers=1, 
                                 batch_first=True, 
                                 bidirectional=True, 
                                 dropout=dropout))
            self.lstms.append(AdaLayerNorm(sty_dim, d_model))
        
        
        self.dropout = dropout
        self.d_model = d_model
        self.sty_dim = sty_dim

    def forward(self, x, style, text_lengths, m):
        masks = m.to(text_lengths.device)
        
        x = x.permute(2, 0, 1)
        s = style.expand(x.shape[0], x.shape[1], -1)
        x = torch.cat([x, s], axis=-1)
        x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
                
        x = x.transpose(0, 1)
        input_lengths = text_lengths.cpu().numpy()
        x = x.transpose(-1, -2)
        
        for block in self.lstms:
            if isinstance(block, AdaLayerNorm):
                x = block(x.transpose(-1, -2), style).transpose(-1, -2)
                x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
                x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
            else:
                x = x.transpose(-1, -2)
                x = nn.utils.rnn.pack_padded_sequence(
                    x, input_lengths, batch_first=True, enforce_sorted=False)
                block.flatten_parameters()
                x, _ = block(x)
                x, _ = nn.utils.rnn.pad_packed_sequence(
                    x, batch_first=True)
                x = F.dropout(x, p=self.dropout, training=self.training)
                x = x.transpose(-1, -2)
                
                x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])

                x_pad[:, :, :x.shape[-1]] = x
                x = x_pad.to(x.device)
        
        return x.transpose(-1, -2)
    
    def inference(self, x, style):
        x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model)
        style = style.expand(x.shape[0], x.shape[1], -1)
        x = torch.cat([x, style], axis=-1)
        src = self.pos_encoder(x)
        output = self.transformer_encoder(src).transpose(0, 1)
        return output
    
    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask
    
    def inference(self, x, style):
        x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model)
        style = style.expand(x.shape[0], x.shape[1], -1)
        x = torch.cat([x, style], axis=-1)
        src = self.pos_encoder(x)
        output = self.transformer_encoder(src).transpose(0, 1)
        return output
    
    def length_to_mask(self, lengths):
        mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
        mask = torch.gt(mask+1, lengths.unsqueeze(1))
        return mask
    
    
        
def load_F0_models(path):
    # load F0 model

    F0_model = JDCNet(num_class=1, seq_len=192)
    params = torch.load(path, map_location='cpu')['net']
    F0_model.load_state_dict(params)
    _ = F0_model.train()
    
    return F0_model


def load_KotoDama_Prompter(path, cfg=None, model_ckpt="ku-nlp/deberta-v3-base-japanese"):

    cfg = AutoConfig.from_pretrained(model_ckpt)
    cfg.update({
    "num_labels": 256
    })

    kotodama_prompt = KotoDama_Prompt.from_pretrained(path, config=cfg)
    
    return kotodama_prompt


def load_KotoDama_TextSampler(path, cfg=None, model_ckpt="line-corporation/line-distilbert-base-japanese"):
    
    cfg = AutoConfig.from_pretrained(model_ckpt)
    cfg.update({
    "num_labels": 256
    })

    kotodama_sampler = KotoDama_Text.from_pretrained(path, config=cfg)
    
    return kotodama_sampler



# def reconstruction_head(path): # didn't make a lot of difference, disabling it for now until i find / train a better net
    
#     recon_model = DiffusionUpsampler(
        
#                     net_t=UNetV0, 
#                     upsample_factor=2, 
#                     in_channels=1, 
#                     channels=[8, 32, 64, 128, 256, 512, 512, 1024, 1024],
#                     factors=[1, 4, 4, 4, 2, 2, 2, 2, 2], 
#                     items=[1, 2, 2, 2, 2, 2, 2, 4, 4], 
#                     diffusion_t=VDiffusion,
#                     sampler_t=VSampler, 
#                 )
    
#     checkpoint = torch.load(path, map_location='cpu')
    
#     new_state_dict = {}
#     for key, value in checkpoint['model_state_dict'].items():
#         new_key = key.replace('module.', '')  # Remove 'module.' prefix
#         new_state_dict[new_key] = value
    
#     recon_model.load_state_dict(new_state_dict)
#     recon_model.eval()
    
#     recon_model = recon_model.to('cuda')
    
#     return recon_model

    
    
def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
    # load ASR model
    def _load_config(path):
        with open(path) as f:
            config = yaml.safe_load(f)
        model_config = config['model_params']
        return model_config

    def _load_model(model_config, model_path):
        model = ASRCNN(**model_config)
        params = torch.load(model_path, map_location='cpu')['model']
        model.load_state_dict(params)
        return model

    asr_model_config = _load_config(ASR_MODEL_CONFIG)
    asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
    _ = asr_model.train()

    return asr_model

def build_model(args, text_aligner, pitch_extractor, bert, KotoDama_Prompt, KotoDama_Text):
    assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown'
    
    if args.decoder.type == "istftnet":
        from Modules.istftnet import Decoder
        decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
                resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
                upsample_rates = args.decoder.upsample_rates,
                upsample_initial_channel=args.decoder.upsample_initial_channel,
                resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
                upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, 
                gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size) 
    else:
        from Modules.hifigan import Decoder
        decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
                resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
                upsample_rates = args.decoder.upsample_rates,
                upsample_initial_channel=args.decoder.upsample_initial_channel,
                resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
                upsample_kernel_sizes=args.decoder.upsample_kernel_sizes) 
        
    text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
    
    predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
    
    style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
    predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
        
    # define diffusion model
    if args.multispeaker:
        transformer = StyleTransformer1d(channels=args.style_dim*2, 
                                    context_embedding_features=bert.config.hidden_size,
                                    context_features=args.style_dim*2, 
                                    **args.diffusion.transformer)
    else:
        transformer = Transformer1d(channels=args.style_dim*2, 
                                    context_embedding_features=bert.config.hidden_size,
                                    **args.diffusion.transformer)
    
    diffusion = AudioDiffusionConditional(
        in_channels=1,
        embedding_max_length=bert.config.max_position_embeddings,
        embedding_features=bert.config.hidden_size,
        embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
        channels=args.style_dim*2,
        context_features=args.style_dim*2,
    )
    
    diffusion.diffusion = KDiffusion(
        net=diffusion.unet,
        sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
        sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
        dynamic_threshold=0.0 
    )
    diffusion.diffusion.net = transformer
    diffusion.unet = transformer

    
    nets = Munch(
        
            bert=bert,
            bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),

            predictor=predictor,
            decoder=decoder,
            text_encoder=text_encoder,

            predictor_encoder=predictor_encoder,
            style_encoder=style_encoder,
            diffusion=diffusion,

            text_aligner = text_aligner,
            pitch_extractor = pitch_extractor,

            mpd = MultiPeriodDiscriminator(),
            msd = MultiResSpecDiscriminator(),
        
            # slm discriminator head
            wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel),
            
            KotoDama_Prompt = KotoDama_Prompt,
            KotoDama_Text = KotoDama_Text,
            
            # recon_diff = recon_diff,

       )
    
    return nets


def load_checkpoint(model, optimizer, path, load_only_params=False, ignore_modules=[]):
    state = torch.load(path, map_location='cpu')
    params = state['net']
    print('loading the ckpt using the correct function.')

    for key in model:
        if key in params and key not in ignore_modules:
            try:
                model[key].load_state_dict(params[key], strict=True)
            except:
                from collections import OrderedDict
                state_dict = params[key]
                new_state_dict = OrderedDict()
                print(f'{key} key length: {len(model[key].state_dict().keys())}, state_dict key length: {len(state_dict.keys())}')
                for (k_m, v_m), (k_c, v_c) in zip(model[key].state_dict().items(), state_dict.items()):
                    new_state_dict[k_m] = v_c
                model[key].load_state_dict(new_state_dict, strict=True)
            print('%s loaded' % key)

    if not load_only_params:
        epoch = state["epoch"]
        iters = state["iters"]
        optimizer.load_state_dict(state["optimizer"])
    else:
        epoch = 0
        iters = 0
        
    return model, optimizer, epoch, iters