RiKrim commited on
Commit
f00e024
1 Parent(s): e461b62

Upload Untitled1.ipynb

Browse files
Files changed (1) hide show
  1. Untitled1.ipynb +2136 -0
Untitled1.ipynb ADDED
@@ -0,0 +1,2136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "markdown",
5
+ "metadata": {
6
+ "id": "-iqK1uZxKOPk"
7
+ },
8
+ "source": []
9
+ },
10
+ {
11
+ "cell_type": "code",
12
+ "execution_count": 3,
13
+ "metadata": {
14
+ "colab": {
15
+ "base_uri": "https://localhost:8080/"
16
+ },
17
+ "id": "BarGLJEUlp88",
18
+ "outputId": "84b24178-ffbb-4151-de2d-069dd5746ac7"
19
+ },
20
+ "outputs": [
21
+ {
22
+ "name": "stdout",
23
+ "output_type": "stream",
24
+ "text": [
25
+ "Requirement already satisfied: datasets in /usr/local/lib/python3.10/dist-packages (2.19.1)\n",
26
+ "Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from datasets) (3.14.0)\n",
27
+ "Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.10/dist-packages (from datasets) (1.25.2)\n",
28
+ "Requirement already satisfied: pyarrow>=12.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (14.0.2)\n",
29
+ "Requirement already satisfied: pyarrow-hotfix in /usr/local/lib/python3.10/dist-packages (from datasets) (0.6)\n",
30
+ "Requirement already satisfied: dill<0.3.9,>=0.3.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.3.8)\n",
31
+ "Requirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets) (2.0.3)\n",
32
+ "Requirement already satisfied: requests>=2.19.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2.31.0)\n",
33
+ "Requirement already satisfied: tqdm>=4.62.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (4.66.4)\n",
34
+ "Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets) (3.4.1)\n",
35
+ "Requirement already satisfied: multiprocess in /usr/local/lib/python3.10/dist-packages (from datasets) (0.70.16)\n",
36
+ "Requirement already satisfied: fsspec[http]<=2024.3.1,>=2023.1.0 in /usr/local/lib/python3.10/dist-packages (from datasets) (2023.6.0)\n",
37
+ "Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets) (3.9.5)\n",
38
+ "Requirement already satisfied: huggingface-hub>=0.21.2 in /usr/local/lib/python3.10/dist-packages (from datasets) (0.23.0)\n",
39
+ "Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from datasets) (24.0)\n",
40
+ "Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from datasets) (6.0.1)\n",
41
+ "Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.3.1)\n",
42
+ "Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (23.2.0)\n",
43
+ "Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.4.1)\n",
44
+ "Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (6.0.5)\n",
45
+ "Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (1.9.4)\n",
46
+ "Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets) (4.0.3)\n",
47
+ "Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.21.2->datasets) (4.11.0)\n",
48
+ "Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.3.2)\n",
49
+ "Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (3.7)\n",
50
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2.0.7)\n",
51
+ "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.19.0->datasets) (2024.2.2)\n",
52
+ "Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2.8.2)\n",
53
+ "Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2023.4)\n",
54
+ "Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets) (2024.1)\n",
55
+ "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas->datasets) (1.16.0)\n"
56
+ ]
57
+ }
58
+ ],
59
+ "source": [
60
+ "pip install datasets"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": 1,
66
+ "metadata": {
67
+ "colab": {
68
+ "base_uri": "https://localhost:8080/"
69
+ },
70
+ "id": "MoeKcp3tlQSf",
71
+ "outputId": "1d6fd480-d37f-4028-de75-9595abc97464"
72
+ },
73
+ "outputs": [
74
+ {
75
+ "name": "stderr",
76
+ "output_type": "stream",
77
+ "text": [
78
+ "/home/user/Desktop/model/venv/lib/python3.11/site-packages/datasets/load.py:1486: FutureWarning: The repository for marsyas/gtzan contains custom code which must be executed to correctly load the dataset. You can inspect the repository content at https://hf.co/datasets/marsyas/gtzan\n",
79
+ "You can avoid this message in future by passing the argument `trust_remote_code=True`.\n",
80
+ "Passing `trust_remote_code=True` will be mandatory to load this dataset from the next major release of `datasets`.\n",
81
+ " warnings.warn(\n"
82
+ ]
83
+ },
84
+ {
85
+ "data": {
86
+ "text/plain": [
87
+ "DatasetDict({\n",
88
+ " train: Dataset({\n",
89
+ " features: ['file', 'audio', 'genre'],\n",
90
+ " num_rows: 999\n",
91
+ " })\n",
92
+ "})"
93
+ ]
94
+ },
95
+ "execution_count": 1,
96
+ "metadata": {},
97
+ "output_type": "execute_result"
98
+ }
99
+ ],
100
+ "source": [
101
+ "from datasets import load_dataset\n",
102
+ "\n",
103
+ "gtzan = load_dataset(\"marsyas/gtzan\", \"all\")\n",
104
+ "gtzan"
105
+ ]
106
+ },
107
+ {
108
+ "cell_type": "code",
109
+ "execution_count": 2,
110
+ "metadata": {
111
+ "colab": {
112
+ "base_uri": "https://localhost:8080/"
113
+ },
114
+ "id": "A3GolExklYZH",
115
+ "outputId": "bdf2d280-749a-4a62-b398-92aa9174079e"
116
+ },
117
+ "outputs": [
118
+ {
119
+ "data": {
120
+ "text/plain": [
121
+ "DatasetDict({\n",
122
+ " train: Dataset({\n",
123
+ " features: ['file', 'audio', 'genre'],\n",
124
+ " num_rows: 999\n",
125
+ " })\n",
126
+ "})"
127
+ ]
128
+ },
129
+ "execution_count": 2,
130
+ "metadata": {},
131
+ "output_type": "execute_result"
132
+ }
133
+ ],
134
+ "source": [
135
+ "gtzan"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": 3,
141
+ "metadata": {
142
+ "id": "r7nBVDEKmKzq"
143
+ },
144
+ "outputs": [],
145
+ "source": [
146
+ "gtzan = gtzan['train'].train_test_split(seed=42, test_size=0.1)\n"
147
+ ]
148
+ },
149
+ {
150
+ "cell_type": "code",
151
+ "execution_count": 4,
152
+ "metadata": {
153
+ "colab": {
154
+ "base_uri": "https://localhost:8080/"
155
+ },
156
+ "id": "AVT3baEn9IAo",
157
+ "outputId": "8c3fe83a-b0a6-4427-c401-28722a4725fb"
158
+ },
159
+ "outputs": [
160
+ {
161
+ "data": {
162
+ "text/plain": [
163
+ "{'file': '/home/user/.cache/huggingface/datasets/downloads/extracted/8467212e1467f829ca8aa5be797cbd9704e95050d4c3e44235bb44dfacaa486f/genres/pop/pop.00098.wav',\n",
164
+ " 'audio': {'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/8467212e1467f829ca8aa5be797cbd9704e95050d4c3e44235bb44dfacaa486f/genres/pop/pop.00098.wav',\n",
165
+ " 'array': array([ 0.10720825, 0.16122437, 0.28585815, ..., -0.22924805,\n",
166
+ " -0.20629883, -0.11334229]),\n",
167
+ " 'sampling_rate': 22050},\n",
168
+ " 'genre': 7}"
169
+ ]
170
+ },
171
+ "execution_count": 4,
172
+ "metadata": {},
173
+ "output_type": "execute_result"
174
+ }
175
+ ],
176
+ "source": [
177
+ "gtzan[\"train\"][0]"
178
+ ]
179
+ },
180
+ {
181
+ "cell_type": "code",
182
+ "execution_count": 5,
183
+ "metadata": {
184
+ "colab": {
185
+ "base_uri": "https://localhost:8080/",
186
+ "height": 35
187
+ },
188
+ "id": "qrB5kdIx9WwX",
189
+ "outputId": "3c0eaa93-f8db-4b39-d5dd-d312d82cc554"
190
+ },
191
+ "outputs": [
192
+ {
193
+ "data": {
194
+ "text/plain": [
195
+ "'pop'"
196
+ ]
197
+ },
198
+ "execution_count": 5,
199
+ "metadata": {},
200
+ "output_type": "execute_result"
201
+ }
202
+ ],
203
+ "source": [
204
+ "id2label_fn = gtzan[\"train\"].features[\"genre\"].int2str\n",
205
+ "id2label_fn(gtzan[\"train\"][0][\"genre\"])"
206
+ ]
207
+ },
208
+ {
209
+ "cell_type": "code",
210
+ "execution_count": 6,
211
+ "metadata": {
212
+ "colab": {
213
+ "base_uri": "https://localhost:8080/"
214
+ },
215
+ "id": "MHzcJshE9b1B",
216
+ "outputId": "dff1405a-1070-44e5-eb08-ace3416df099"
217
+ },
218
+ "outputs": [
219
+ {
220
+ "data": {
221
+ "text/plain": [
222
+ "DatasetDict({\n",
223
+ " train: Dataset({\n",
224
+ " features: ['file', 'audio', 'genre'],\n",
225
+ " num_rows: 899\n",
226
+ " })\n",
227
+ " test: Dataset({\n",
228
+ " features: ['file', 'audio', 'genre'],\n",
229
+ " num_rows: 100\n",
230
+ " })\n",
231
+ "})"
232
+ ]
233
+ },
234
+ "execution_count": 6,
235
+ "metadata": {},
236
+ "output_type": "execute_result"
237
+ }
238
+ ],
239
+ "source": [
240
+ "gtzan"
241
+ ]
242
+ },
243
+ {
244
+ "cell_type": "code",
245
+ "execution_count": 7,
246
+ "metadata": {
247
+ "colab": {
248
+ "base_uri": "https://localhost:8080/"
249
+ },
250
+ "id": "Q54XUqyW9opO",
251
+ "outputId": "2a03f78b-b911-42ea-ab87-0f8250cedb16"
252
+ },
253
+ "outputs": [
254
+ {
255
+ "name": "stdout",
256
+ "output_type": "stream",
257
+ "text": [
258
+ "Requirement already satisfied: gradio in ./venv/lib/python3.11/site-packages (4.31.4)\n",
259
+ "Requirement already satisfied: aiofiles<24.0,>=22.0 in ./venv/lib/python3.11/site-packages (from gradio) (23.2.1)\n",
260
+ "Requirement already satisfied: altair<6.0,>=4.2.0 in ./venv/lib/python3.11/site-packages (from gradio) (5.3.0)\n",
261
+ "Requirement already satisfied: fastapi in ./venv/lib/python3.11/site-packages (from gradio) (0.111.0)\n",
262
+ "Requirement already satisfied: ffmpy in ./venv/lib/python3.11/site-packages (from gradio) (0.3.2)\n",
263
+ "Requirement already satisfied: gradio-client==0.16.4 in ./venv/lib/python3.11/site-packages (from gradio) (0.16.4)\n",
264
+ "Requirement already satisfied: httpx>=0.24.1 in ./venv/lib/python3.11/site-packages (from gradio) (0.27.0)\n",
265
+ "Requirement already satisfied: huggingface-hub>=0.19.3 in ./venv/lib/python3.11/site-packages (from gradio) (0.23.0)\n",
266
+ "Requirement already satisfied: importlib-resources<7.0,>=1.3 in ./venv/lib/python3.11/site-packages (from gradio) (6.4.0)\n",
267
+ "Requirement already satisfied: jinja2<4.0 in ./venv/lib/python3.11/site-packages (from gradio) (3.1.4)\n",
268
+ "Requirement already satisfied: markupsafe~=2.0 in ./venv/lib/python3.11/site-packages (from gradio) (2.1.5)\n",
269
+ "Requirement already satisfied: matplotlib~=3.0 in ./venv/lib/python3.11/site-packages (from gradio) (3.9.0)\n",
270
+ "Requirement already satisfied: numpy~=1.0 in ./venv/lib/python3.11/site-packages (from gradio) (1.26.4)\n",
271
+ "Requirement already satisfied: orjson~=3.0 in ./venv/lib/python3.11/site-packages (from gradio) (3.10.3)\n",
272
+ "Requirement already satisfied: packaging in ./venv/lib/python3.11/site-packages (from gradio) (24.0)\n",
273
+ "Requirement already satisfied: pandas<3.0,>=1.0 in ./venv/lib/python3.11/site-packages (from gradio) (2.2.2)\n",
274
+ "Requirement already satisfied: pillow<11.0,>=8.0 in ./venv/lib/python3.11/site-packages (from gradio) (10.3.0)\n",
275
+ "Requirement already satisfied: pydantic>=2.0 in ./venv/lib/python3.11/site-packages (from gradio) (2.7.1)\n",
276
+ "Requirement already satisfied: pydub in ./venv/lib/python3.11/site-packages (from gradio) (0.25.1)\n",
277
+ "Requirement already satisfied: python-multipart>=0.0.9 in ./venv/lib/python3.11/site-packages (from gradio) (0.0.9)\n",
278
+ "Requirement already satisfied: pyyaml<7.0,>=5.0 in ./venv/lib/python3.11/site-packages (from gradio) (6.0.1)\n",
279
+ "Requirement already satisfied: ruff>=0.2.2 in ./venv/lib/python3.11/site-packages (from gradio) (0.4.4)\n",
280
+ "Requirement already satisfied: semantic-version~=2.0 in ./venv/lib/python3.11/site-packages (from gradio) (2.10.0)\n",
281
+ "Requirement already satisfied: tomlkit==0.12.0 in ./venv/lib/python3.11/site-packages (from gradio) (0.12.0)\n",
282
+ "Requirement already satisfied: typer<1.0,>=0.12 in ./venv/lib/python3.11/site-packages (from gradio) (0.12.3)\n",
283
+ "Requirement already satisfied: typing-extensions~=4.0 in ./venv/lib/python3.11/site-packages (from gradio) (4.11.0)\n",
284
+ "Requirement already satisfied: urllib3~=2.0 in ./venv/lib/python3.11/site-packages (from gradio) (2.2.1)\n",
285
+ "Requirement already satisfied: uvicorn>=0.14.0 in ./venv/lib/python3.11/site-packages (from gradio) (0.29.0)\n",
286
+ "Requirement already satisfied: fsspec in ./venv/lib/python3.11/site-packages (from gradio-client==0.16.4->gradio) (2024.3.1)\n",
287
+ "Requirement already satisfied: websockets<12.0,>=10.0 in ./venv/lib/python3.11/site-packages (from gradio-client==0.16.4->gradio) (11.0.3)\n",
288
+ "Requirement already satisfied: jsonschema>=3.0 in ./venv/lib/python3.11/site-packages (from altair<6.0,>=4.2.0->gradio) (4.22.0)\n",
289
+ "Requirement already satisfied: toolz in ./venv/lib/python3.11/site-packages (from altair<6.0,>=4.2.0->gradio) (0.12.1)\n",
290
+ "Requirement already satisfied: anyio in ./venv/lib/python3.11/site-packages (from httpx>=0.24.1->gradio) (4.3.0)\n",
291
+ "Requirement already satisfied: certifi in ./venv/lib/python3.11/site-packages (from httpx>=0.24.1->gradio) (2024.2.2)\n",
292
+ "Requirement already satisfied: httpcore==1.* in ./venv/lib/python3.11/site-packages (from httpx>=0.24.1->gradio) (1.0.5)\n",
293
+ "Requirement already satisfied: idna in ./venv/lib/python3.11/site-packages (from httpx>=0.24.1->gradio) (3.7)\n",
294
+ "Requirement already satisfied: sniffio in ./venv/lib/python3.11/site-packages (from httpx>=0.24.1->gradio) (1.3.1)\n",
295
+ "Requirement already satisfied: h11<0.15,>=0.13 in ./venv/lib/python3.11/site-packages (from httpcore==1.*->httpx>=0.24.1->gradio) (0.14.0)\n",
296
+ "Requirement already satisfied: filelock in ./venv/lib/python3.11/site-packages (from huggingface-hub>=0.19.3->gradio) (3.14.0)\n",
297
+ "Requirement already satisfied: requests in ./venv/lib/python3.11/site-packages (from huggingface-hub>=0.19.3->gradio) (2.31.0)\n",
298
+ "Requirement already satisfied: tqdm>=4.42.1 in ./venv/lib/python3.11/site-packages (from huggingface-hub>=0.19.3->gradio) (4.66.4)\n",
299
+ "Requirement already satisfied: contourpy>=1.0.1 in ./venv/lib/python3.11/site-packages (from matplotlib~=3.0->gradio) (1.2.1)\n",
300
+ "Requirement already satisfied: cycler>=0.10 in ./venv/lib/python3.11/site-packages (from matplotlib~=3.0->gradio) (0.12.1)\n",
301
+ "Requirement already satisfied: fonttools>=4.22.0 in ./venv/lib/python3.11/site-packages (from matplotlib~=3.0->gradio) (4.51.0)\n",
302
+ "Requirement already satisfied: kiwisolver>=1.3.1 in ./venv/lib/python3.11/site-packages (from matplotlib~=3.0->gradio) (1.4.5)\n",
303
+ "Requirement already satisfied: pyparsing>=2.3.1 in ./venv/lib/python3.11/site-packages (from matplotlib~=3.0->gradio) (3.1.2)\n",
304
+ "Requirement already satisfied: python-dateutil>=2.7 in ./venv/lib/python3.11/site-packages (from matplotlib~=3.0->gradio) (2.9.0.post0)\n",
305
+ "Requirement already satisfied: pytz>=2020.1 in ./venv/lib/python3.11/site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
306
+ "Requirement already satisfied: tzdata>=2022.7 in ./venv/lib/python3.11/site-packages (from pandas<3.0,>=1.0->gradio) (2024.1)\n",
307
+ "Requirement already satisfied: annotated-types>=0.4.0 in ./venv/lib/python3.11/site-packages (from pydantic>=2.0->gradio) (0.6.0)\n",
308
+ "Requirement already satisfied: pydantic-core==2.18.2 in ./venv/lib/python3.11/site-packages (from pydantic>=2.0->gradio) (2.18.2)\n",
309
+ "Requirement already satisfied: click>=8.0.0 in ./venv/lib/python3.11/site-packages (from typer<1.0,>=0.12->gradio) (8.1.7)\n",
310
+ "Requirement already satisfied: shellingham>=1.3.0 in ./venv/lib/python3.11/site-packages (from typer<1.0,>=0.12->gradio) (1.5.4)\n",
311
+ "Requirement already satisfied: rich>=10.11.0 in ./venv/lib/python3.11/site-packages (from typer<1.0,>=0.12->gradio) (13.7.1)\n",
312
+ "Requirement already satisfied: starlette<0.38.0,>=0.37.2 in ./venv/lib/python3.11/site-packages (from fastapi->gradio) (0.37.2)\n",
313
+ "Requirement already satisfied: fastapi-cli>=0.0.2 in ./venv/lib/python3.11/site-packages (from fastapi->gradio) (0.0.4)\n",
314
+ "Requirement already satisfied: ujson!=4.0.2,!=4.1.0,!=4.2.0,!=4.3.0,!=5.0.0,!=5.1.0,>=4.0.1 in ./venv/lib/python3.11/site-packages (from fastapi->gradio) (5.10.0)\n",
315
+ "Requirement already satisfied: email_validator>=2.0.0 in ./venv/lib/python3.11/site-packages (from fastapi->gradio) (2.1.1)\n",
316
+ "Requirement already satisfied: dnspython>=2.0.0 in ./venv/lib/python3.11/site-packages (from email_validator>=2.0.0->fastapi->gradio) (2.6.1)\n",
317
+ "Requirement already satisfied: attrs>=22.2.0 in ./venv/lib/python3.11/site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (23.2.0)\n",
318
+ "Requirement already satisfied: jsonschema-specifications>=2023.03.6 in ./venv/lib/python3.11/site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (2023.12.1)\n",
319
+ "Requirement already satisfied: referencing>=0.28.4 in ./venv/lib/python3.11/site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.35.1)\n",
320
+ "Requirement already satisfied: rpds-py>=0.7.1 in ./venv/lib/python3.11/site-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.18.1)\n",
321
+ "Requirement already satisfied: six>=1.5 in ./venv/lib/python3.11/site-packages (from python-dateutil>=2.7->matplotlib~=3.0->gradio) (1.16.0)\n",
322
+ "Requirement already satisfied: markdown-it-py>=2.2.0 in ./venv/lib/python3.11/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (3.0.0)\n",
323
+ "Requirement already satisfied: pygments<3.0.0,>=2.13.0 in ./venv/lib/python3.11/site-packages (from rich>=10.11.0->typer<1.0,>=0.12->gradio) (2.18.0)\n",
324
+ "Requirement already satisfied: httptools>=0.5.0 in ./venv/lib/python3.11/site-packages (from uvicorn>=0.14.0->gradio) (0.6.1)\n",
325
+ "Requirement already satisfied: python-dotenv>=0.13 in ./venv/lib/python3.11/site-packages (from uvicorn>=0.14.0->gradio) (1.0.1)\n",
326
+ "Requirement already satisfied: uvloop!=0.15.0,!=0.15.1,>=0.14.0 in ./venv/lib/python3.11/site-packages (from uvicorn>=0.14.0->gradio) (0.19.0)\n",
327
+ "Requirement already satisfied: watchfiles>=0.13 in ./venv/lib/python3.11/site-packages (from uvicorn>=0.14.0->gradio) (0.21.0)\n",
328
+ "Requirement already satisfied: charset-normalizer<4,>=2 in ./venv/lib/python3.11/site-packages (from requests->huggingface-hub>=0.19.3->gradio) (3.3.2)\n",
329
+ "Requirement already satisfied: mdurl~=0.1 in ./venv/lib/python3.11/site-packages (from markdown-it-py>=2.2.0->rich>=10.11.0->typer<1.0,>=0.12->gradio) (0.1.2)\n",
330
+ "Note: you may need to restart the kernel to use updated packages.\n"
331
+ ]
332
+ }
333
+ ],
334
+ "source": [
335
+ "pip install gradio"
336
+ ]
337
+ },
338
+ {
339
+ "cell_type": "code",
340
+ "execution_count": 8,
341
+ "metadata": {
342
+ "id": "3nsunOhq9i6K"
343
+ },
344
+ "outputs": [],
345
+ "source": [
346
+ "import gradio as gr"
347
+ ]
348
+ },
349
+ {
350
+ "cell_type": "code",
351
+ "execution_count": 9,
352
+ "metadata": {
353
+ "colab": {
354
+ "base_uri": "https://localhost:8080/",
355
+ "height": 715
356
+ },
357
+ "id": "wD4Jd7qg-ApE",
358
+ "outputId": "734b3fcf-6440-4b4b-8405-2c3a830e8569",
359
+ "scrolled": true
360
+ },
361
+ "outputs": [
362
+ {
363
+ "name": "stderr",
364
+ "output_type": "stream",
365
+ "text": [
366
+ "/home/user/Desktop/model/venv/lib/python3.11/site-packages/gradio/processing_utils.py:582: UserWarning: Trying to convert audio automatically from float64 to 16-bit int format.\n",
367
+ " warnings.warn(warning.format(data.dtype))\n"
368
+ ]
369
+ },
370
+ {
371
+ "name": "stdout",
372
+ "output_type": "stream",
373
+ "text": [
374
+ "Running on local URL: http://127.0.0.1:7860\n",
375
+ "\n",
376
+ "To create a public link, set `share=True` in `launch()`.\n"
377
+ ]
378
+ },
379
+ {
380
+ "data": {
381
+ "text/html": [
382
+ "<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
383
+ ],
384
+ "text/plain": [
385
+ "<IPython.core.display.HTML object>"
386
+ ]
387
+ },
388
+ "metadata": {},
389
+ "output_type": "display_data"
390
+ },
391
+ {
392
+ "name": "stdout",
393
+ "output_type": "stream",
394
+ "text": [
395
+ "Keyboard interruption in main thread... closing server.\n"
396
+ ]
397
+ },
398
+ {
399
+ "data": {
400
+ "text/plain": []
401
+ },
402
+ "execution_count": 9,
403
+ "metadata": {},
404
+ "output_type": "execute_result"
405
+ }
406
+ ],
407
+ "source": [
408
+ "def generate_audio():\n",
409
+ " example = gtzan[\"train\"].shuffle()[0]\n",
410
+ " audio = example[\"audio\"]\n",
411
+ " return (\n",
412
+ " audio[\"sampling_rate\"],\n",
413
+ " audio[\"array\"],\n",
414
+ " ), id2label_fn(example[\"genre\"])\n",
415
+ "\n",
416
+ "\n",
417
+ "with gr.Blocks() as demo:\n",
418
+ " with gr.Column():\n",
419
+ " for _ in range(4):\n",
420
+ " audio, label = generate_audio()\n",
421
+ " output = gr.Audio(audio, label=label)\n",
422
+ "\n",
423
+ "demo.launch(debug=True)\n"
424
+ ]
425
+ },
426
+ {
427
+ "cell_type": "code",
428
+ "execution_count": 13,
429
+ "metadata": {
430
+ "id": "JUzgRS0J_DR8"
431
+ },
432
+ "outputs": [],
433
+ "source": [
434
+ "from transformers import AutoFeatureExtractor\n",
435
+ "\n",
436
+ "model_id = \"ntu-spml/distilhubert\"\n",
437
+ "feature_extractor = AutoFeatureExtractor.from_pretrained(\n",
438
+ " model_id, do_normalize=True, return_attention_mask=True\n",
439
+ ")"
440
+ ]
441
+ },
442
+ {
443
+ "cell_type": "code",
444
+ "execution_count": 14,
445
+ "metadata": {
446
+ "colab": {
447
+ "base_uri": "https://localhost:8080/"
448
+ },
449
+ "id": "rbQJMBRr_MJU",
450
+ "outputId": "0c8010d9-ab10-4970-de54-173ab7fb03c9"
451
+ },
452
+ "outputs": [
453
+ {
454
+ "data": {
455
+ "text/plain": [
456
+ "16000"
457
+ ]
458
+ },
459
+ "execution_count": 14,
460
+ "metadata": {},
461
+ "output_type": "execute_result"
462
+ }
463
+ ],
464
+ "source": [
465
+ "sampling_rate = feature_extractor.sampling_rate\n",
466
+ "sampling_rate"
467
+ ]
468
+ },
469
+ {
470
+ "cell_type": "code",
471
+ "execution_count": 15,
472
+ "metadata": {
473
+ "id": "G_TXS3TE_Pom"
474
+ },
475
+ "outputs": [],
476
+ "source": [
477
+ "from datasets import Audio\n",
478
+ "\n",
479
+ "gtzan = gtzan.cast_column(\"audio\", Audio(sampling_rate=sampling_rate))"
480
+ ]
481
+ },
482
+ {
483
+ "cell_type": "code",
484
+ "execution_count": 16,
485
+ "metadata": {
486
+ "colab": {
487
+ "base_uri": "https://localhost:8080/"
488
+ },
489
+ "id": "7VBWBOIv_VF9",
490
+ "outputId": "d7564201-e814-45bc-8254-5e2eebaf65b8"
491
+ },
492
+ "outputs": [
493
+ {
494
+ "data": {
495
+ "text/plain": [
496
+ "{'file': '/home/user/.cache/huggingface/datasets/downloads/extracted/8467212e1467f829ca8aa5be797cbd9704e95050d4c3e44235bb44dfacaa486f/genres/pop/pop.00098.wav',\n",
497
+ " 'audio': {'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/8467212e1467f829ca8aa5be797cbd9704e95050d4c3e44235bb44dfacaa486f/genres/pop/pop.00098.wav',\n",
498
+ " 'array': array([ 0.0873509 , 0.20183384, 0.4790867 , ..., -0.18743178,\n",
499
+ " -0.23294401, -0.13517427]),\n",
500
+ " 'sampling_rate': 16000},\n",
501
+ " 'genre': 7}"
502
+ ]
503
+ },
504
+ "execution_count": 16,
505
+ "metadata": {},
506
+ "output_type": "execute_result"
507
+ }
508
+ ],
509
+ "source": [
510
+ "gtzan[\"train\"][0]"
511
+ ]
512
+ },
513
+ {
514
+ "cell_type": "code",
515
+ "execution_count": 17,
516
+ "metadata": {
517
+ "colab": {
518
+ "base_uri": "https://localhost:8080/"
519
+ },
520
+ "id": "uTogCiaS_Y4R",
521
+ "outputId": "738eea16-68f8-4a0e-a8a3-6fbb3c21e69b"
522
+ },
523
+ "outputs": [
524
+ {
525
+ "name": "stdout",
526
+ "output_type": "stream",
527
+ "text": [
528
+ "Mean: 0.000185, Variance: 0.0493\n"
529
+ ]
530
+ }
531
+ ],
532
+ "source": [
533
+ "import numpy as np\n",
534
+ "\n",
535
+ "sample = gtzan[\"train\"][0][\"audio\"]\n",
536
+ "\n",
537
+ "print(f\"Mean: {np.mean(sample['array']):.3}, Variance: {np.var(sample['array']):.3}\")"
538
+ ]
539
+ },
540
+ {
541
+ "cell_type": "code",
542
+ "execution_count": 18,
543
+ "metadata": {
544
+ "colab": {
545
+ "base_uri": "https://localhost:8080/"
546
+ },
547
+ "id": "F_NLE8xQ_cj6",
548
+ "outputId": "7d4aefe0-9249-4661-f80c-247d720bbac7"
549
+ },
550
+ "outputs": [
551
+ {
552
+ "name": "stdout",
553
+ "output_type": "stream",
554
+ "text": [
555
+ "inputs keys: ['input_values', 'attention_mask']\n",
556
+ "Mean: -7.45e-09, Variance: 1.0\n"
557
+ ]
558
+ }
559
+ ],
560
+ "source": [
561
+ "inputs = feature_extractor(sample[\"array\"], sampling_rate=sample[\"sampling_rate\"])\n",
562
+ "\n",
563
+ "print(f\"inputs keys: {list(inputs.keys())}\")\n",
564
+ "\n",
565
+ "print(\n",
566
+ " f\"Mean: {np.mean(inputs['input_values']):.3}, Variance: {np.var(inputs['input_values']):.3}\"\n",
567
+ ")"
568
+ ]
569
+ },
570
+ {
571
+ "cell_type": "code",
572
+ "execution_count": 19,
573
+ "metadata": {
574
+ "id": "QpQLm9B6_1FS"
575
+ },
576
+ "outputs": [],
577
+ "source": [
578
+ "max_duration = 30.0\n",
579
+ "\n",
580
+ "\n",
581
+ "def preprocess_function(examples):\n",
582
+ " audio_arrays = [x[\"array\"] for x in examples[\"audio\"]]\n",
583
+ " inputs = feature_extractor(\n",
584
+ " audio_arrays,\n",
585
+ " sampling_rate=feature_extractor.sampling_rate,\n",
586
+ " max_length=int(feature_extractor.sampling_rate * max_duration),\n",
587
+ " truncation=True,\n",
588
+ " return_attention_mask=True,\n",
589
+ " )\n",
590
+ " return inputs"
591
+ ]
592
+ },
593
+ {
594
+ "cell_type": "code",
595
+ "execution_count": 20,
596
+ "metadata": {
597
+ "colab": {
598
+ "base_uri": "https://localhost:8080/"
599
+ },
600
+ "id": "VBMlZHdG_3qV",
601
+ "outputId": "caef6ff5-ad09-4cf7-ae29-011966eaf285"
602
+ },
603
+ "outputs": [
604
+ {
605
+ "data": {
606
+ "application/vnd.jupyter.widget-view+json": {
607
+ "model_id": "fde897eff7004793a268e47bab0aa2d2",
608
+ "version_major": 2,
609
+ "version_minor": 0
610
+ },
611
+ "text/plain": [
612
+ "Map: 0%| | 0/899 [00:00<?, ? examples/s]"
613
+ ]
614
+ },
615
+ "metadata": {},
616
+ "output_type": "display_data"
617
+ },
618
+ {
619
+ "data": {
620
+ "application/vnd.jupyter.widget-view+json": {
621
+ "model_id": "d0b134557a964ec0b515e464335443c8",
622
+ "version_major": 2,
623
+ "version_minor": 0
624
+ },
625
+ "text/plain": [
626
+ "Map: 0%| | 0/100 [00:00<?, ? examples/s]"
627
+ ]
628
+ },
629
+ "metadata": {},
630
+ "output_type": "display_data"
631
+ },
632
+ {
633
+ "data": {
634
+ "text/plain": [
635
+ "DatasetDict({\n",
636
+ " train: Dataset({\n",
637
+ " features: ['genre', 'input_values', 'attention_mask'],\n",
638
+ " num_rows: 899\n",
639
+ " })\n",
640
+ " test: Dataset({\n",
641
+ " features: ['genre', 'input_values', 'attention_mask'],\n",
642
+ " num_rows: 100\n",
643
+ " })\n",
644
+ "})"
645
+ ]
646
+ },
647
+ "execution_count": 20,
648
+ "metadata": {},
649
+ "output_type": "execute_result"
650
+ }
651
+ ],
652
+ "source": [
653
+ "gtzan_encoded = gtzan.map(\n",
654
+ " preprocess_function,\n",
655
+ " remove_columns=[\"audio\", \"file\"],\n",
656
+ " batched=True,\n",
657
+ " batch_size=100,\n",
658
+ " num_proc=1,\n",
659
+ ")\n",
660
+ "gtzan_encoded"
661
+ ]
662
+ },
663
+ {
664
+ "cell_type": "code",
665
+ "execution_count": 21,
666
+ "metadata": {
667
+ "id": "0APLcKcrAFYn"
668
+ },
669
+ "outputs": [],
670
+ "source": [
671
+ "gtzan_encoded = gtzan_encoded.rename_column(\"genre\", \"label\")\n"
672
+ ]
673
+ },
674
+ {
675
+ "cell_type": "code",
676
+ "execution_count": 22,
677
+ "metadata": {
678
+ "colab": {
679
+ "base_uri": "https://localhost:8080/",
680
+ "height": 35
681
+ },
682
+ "id": "tUJf71lOARSn",
683
+ "outputId": "e87ce79c-f11c-494c-e82f-2e2a2cb8b4a0"
684
+ },
685
+ "outputs": [
686
+ {
687
+ "data": {
688
+ "text/plain": [
689
+ "'pop'"
690
+ ]
691
+ },
692
+ "execution_count": 22,
693
+ "metadata": {},
694
+ "output_type": "execute_result"
695
+ }
696
+ ],
697
+ "source": [
698
+ "id2label = {\n",
699
+ " str(i): id2label_fn(i)\n",
700
+ " for i in range(len(gtzan_encoded[\"train\"].features[\"label\"].names))\n",
701
+ "}\n",
702
+ "label2id = {v: k for k, v in id2label.items()}\n",
703
+ "\n",
704
+ "id2label[\"7\"]"
705
+ ]
706
+ },
707
+ {
708
+ "cell_type": "code",
709
+ "execution_count": 23,
710
+ "metadata": {
711
+ "colab": {
712
+ "base_uri": "https://localhost:8080/"
713
+ },
714
+ "id": "f8yisCsFAUf6",
715
+ "outputId": "4b51980e-74fc-4bb9-b38b-8f27762a2bab"
716
+ },
717
+ "outputs": [
718
+ {
719
+ "name": "stderr",
720
+ "output_type": "stream",
721
+ "text": [
722
+ "Some weights of HubertForSequenceClassification were not initialized from the model checkpoint at ntu-spml/distilhubert and are newly initialized: ['classifier.bias', 'classifier.weight', 'encoder.pos_conv_embed.conv.parametrizations.weight.original0', 'encoder.pos_conv_embed.conv.parametrizations.weight.original1', 'projector.bias', 'projector.weight']\n",
723
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
724
+ ]
725
+ }
726
+ ],
727
+ "source": [
728
+ "from transformers import AutoModelForAudioClassification\n",
729
+ "\n",
730
+ "num_labels = len(id2label)\n",
731
+ "\n",
732
+ "model = AutoModelForAudioClassification.from_pretrained(\n",
733
+ " model_id,\n",
734
+ " num_labels=num_labels,\n",
735
+ " label2id=label2id,\n",
736
+ " id2label=id2label,\n",
737
+ ")"
738
+ ]
739
+ },
740
+ {
741
+ "cell_type": "code",
742
+ "execution_count": 24,
743
+ "metadata": {
744
+ "colab": {
745
+ "base_uri": "https://localhost:8080/",
746
+ "height": 145,
747
+ "referenced_widgets": [
748
+ "5f5bce14ffd54ce6aaddf7eee06b0780",
749
+ "227494428333441b891020e6f87b338b",
750
+ "f0bb2256813f416194677eb338417868",
751
+ "a0aca0338dec449b88c8285d1f0cbef7",
752
+ "50ba98fdb9ed47d1b6108c7aa4f1b088",
753
+ "5326b1b1e1094e55b7f1f3ceeb44621c",
754
+ "7bbce34b8ce5468eb7ef98efcba9ae70",
755
+ "fc03fa730876435487990cec90250e25",
756
+ "c1d6265183ba43d2935f5feff79187b7",
757
+ "00bfd21bca544c47bea6da0e0ce3487f",
758
+ "216d9091b816416f81033ef201d98bea",
759
+ "30df2beaf92d4d4ea31e5501918f07ba",
760
+ "d96f88c9819440d29611539bd2890260",
761
+ "8b6b79964e2042d8a853510727e2e34f",
762
+ "5640b91b99ed4e3c8182266e52a86ca8",
763
+ "5b7df71497b84943a7fabd68b9fdf031",
764
+ "faf2939133e54dffaa208a75c257d0d3",
765
+ "7c014d81820d4f598a26a9c28a558a0c",
766
+ "636229e44fd44ad699a1eaf2339752ad",
767
+ "335b02d36d1d4195a6bae34d480c8e5c",
768
+ "5fe3ce149760495482ed27d4437f948e",
769
+ "cdd0a406c34c49d495c83768bf277552",
770
+ "d565aba281334aefa921962b6f641379",
771
+ "ddbd15cd160847d7ad8c373c027bea5e",
772
+ "6b057e0d7c404cf1bea422f48e4781e8",
773
+ "f4bdef5898794847bc0c97ca759b8037",
774
+ "6a028ea873874b20b6cf7928ccd84538",
775
+ "046b245d59fa456c806d3a74e16e6daa",
776
+ "ff30d5707c0048058bf66f4d7cacaa53",
777
+ "289042798aa0494282fd02f8253e8764",
778
+ "c7ff28fb537347e09acaf84f23eea5ba",
779
+ "0dda3266d3ea493e83e3b1cf47f6524e"
780
+ ]
781
+ },
782
+ "id": "uivN5iECAuBj",
783
+ "outputId": "94c3fc66-2d04-4a90-ccc4-6ccbee3c20e6"
784
+ },
785
+ "outputs": [
786
+ {
787
+ "data": {
788
+ "application/vnd.jupyter.widget-view+json": {
789
+ "model_id": "4f53d36c21a54abe830ef0ee181f58b8",
790
+ "version_major": 2,
791
+ "version_minor": 0
792
+ },
793
+ "text/plain": [
794
+ "VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
795
+ ]
796
+ },
797
+ "metadata": {},
798
+ "output_type": "display_data"
799
+ }
800
+ ],
801
+ "source": [
802
+ "from huggingface_hub import notebook_login\n",
803
+ "\n",
804
+ "notebook_login()"
805
+ ]
806
+ },
807
+ {
808
+ "cell_type": "code",
809
+ "execution_count": 25,
810
+ "metadata": {
811
+ "colab": {
812
+ "base_uri": "https://localhost:8080/"
813
+ },
814
+ "id": "3b-CxXheA66s",
815
+ "outputId": "00d0f098-2af2-4475-edde-d74b726054e5"
816
+ },
817
+ "outputs": [
818
+ {
819
+ "name": "stdout",
820
+ "output_type": "stream",
821
+ "text": [
822
+ "Requirement already satisfied: accelerate in ./venv/lib/python3.11/site-packages (0.30.1)\n",
823
+ "Requirement already satisfied: numpy>=1.17 in ./venv/lib/python3.11/site-packages (from accelerate) (1.26.4)\n",
824
+ "Requirement already satisfied: packaging>=20.0 in ./venv/lib/python3.11/site-packages (from accelerate) (24.0)\n",
825
+ "Requirement already satisfied: psutil in ./venv/lib/python3.11/site-packages (from accelerate) (5.9.8)\n",
826
+ "Requirement already satisfied: pyyaml in ./venv/lib/python3.11/site-packages (from accelerate) (6.0.1)\n",
827
+ "Requirement already satisfied: torch>=1.10.0 in ./venv/lib/python3.11/site-packages (from accelerate) (2.3.0)\n",
828
+ "Requirement already satisfied: huggingface-hub in ./venv/lib/python3.11/site-packages (from accelerate) (0.23.0)\n",
829
+ "Requirement already satisfied: safetensors>=0.3.1 in ./venv/lib/python3.11/site-packages (from accelerate) (0.4.3)\n",
830
+ "Requirement already satisfied: filelock in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (3.14.0)\n",
831
+ "Requirement already satisfied: typing-extensions>=4.8.0 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (4.11.0)\n",
832
+ "Requirement already satisfied: sympy in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (1.12)\n",
833
+ "Requirement already satisfied: networkx in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (3.3)\n",
834
+ "Requirement already satisfied: jinja2 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (3.1.4)\n",
835
+ "Requirement already satisfied: fsspec in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (2024.3.1)\n",
836
+ "Requirement already satisfied: nvidia-cuda-nvrtc-cu12==12.1.105 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (12.1.105)\n",
837
+ "Requirement already satisfied: nvidia-cuda-runtime-cu12==12.1.105 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (12.1.105)\n",
838
+ "Requirement already satisfied: nvidia-cuda-cupti-cu12==12.1.105 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (12.1.105)\n",
839
+ "Requirement already satisfied: nvidia-cudnn-cu12==8.9.2.26 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (8.9.2.26)\n",
840
+ "Requirement already satisfied: nvidia-cublas-cu12==12.1.3.1 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (12.1.3.1)\n",
841
+ "Requirement already satisfied: nvidia-cufft-cu12==11.0.2.54 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (11.0.2.54)\n",
842
+ "Requirement already satisfied: nvidia-curand-cu12==10.3.2.106 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (10.3.2.106)\n",
843
+ "Requirement already satisfied: nvidia-cusolver-cu12==11.4.5.107 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (11.4.5.107)\n",
844
+ "Requirement already satisfied: nvidia-cusparse-cu12==12.1.0.106 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (12.1.0.106)\n",
845
+ "Requirement already satisfied: nvidia-nccl-cu12==2.20.5 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (2.20.5)\n",
846
+ "Requirement already satisfied: nvidia-nvtx-cu12==12.1.105 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (12.1.105)\n",
847
+ "Requirement already satisfied: triton==2.3.0 in ./venv/lib/python3.11/site-packages (from torch>=1.10.0->accelerate) (2.3.0)\n",
848
+ "Requirement already satisfied: nvidia-nvjitlink-cu12 in ./venv/lib/python3.11/site-packages (from nvidia-cusolver-cu12==11.4.5.107->torch>=1.10.0->accelerate) (12.4.127)\n",
849
+ "Requirement already satisfied: requests in ./venv/lib/python3.11/site-packages (from huggingface-hub->accelerate) (2.31.0)\n",
850
+ "Requirement already satisfied: tqdm>=4.42.1 in ./venv/lib/python3.11/site-packages (from huggingface-hub->accelerate) (4.66.4)\n",
851
+ "Requirement already satisfied: MarkupSafe>=2.0 in ./venv/lib/python3.11/site-packages (from jinja2->torch>=1.10.0->accelerate) (2.1.5)\n",
852
+ "Requirement already satisfied: charset-normalizer<4,>=2 in ./venv/lib/python3.11/site-packages (from requests->huggingface-hub->accelerate) (3.3.2)\n",
853
+ "Requirement already satisfied: idna<4,>=2.5 in ./venv/lib/python3.11/site-packages (from requests->huggingface-hub->accelerate) (3.7)\n",
854
+ "Requirement already satisfied: urllib3<3,>=1.21.1 in ./venv/lib/python3.11/site-packages (from requests->huggingface-hub->accelerate) (2.2.1)\n",
855
+ "Requirement already satisfied: certifi>=2017.4.17 in ./venv/lib/python3.11/site-packages (from requests->huggingface-hub->accelerate) (2024.2.2)\n",
856
+ "Requirement already satisfied: mpmath>=0.19 in ./venv/lib/python3.11/site-packages (from sympy->torch>=1.10.0->accelerate) (1.3.0)\n",
857
+ "Note: you may need to restart the kernel to use updated packages.\n"
858
+ ]
859
+ }
860
+ ],
861
+ "source": [
862
+ "pip install accelerate"
863
+ ]
864
+ },
865
+ {
866
+ "cell_type": "code",
867
+ "execution_count": 23,
868
+ "metadata": {
869
+ "id": "4WBTkzyuCflX"
870
+ },
871
+ "outputs": [],
872
+ "source": []
873
+ },
874
+ {
875
+ "cell_type": "code",
876
+ "execution_count": 27,
877
+ "metadata": {
878
+ "id": "kntrjQoADPEK"
879
+ },
880
+ "outputs": [],
881
+ "source": [
882
+ "pip install -U transformers"
883
+ ]
884
+ },
885
+ {
886
+ "cell_type": "code",
887
+ "execution_count": 31,
888
+ "metadata": {
889
+ "id": "9OlgmAR8A0mG"
890
+ },
891
+ "outputs": [],
892
+ "source": [
893
+ "from transformers import TrainingArguments\n",
894
+ "\n",
895
+ "model_name = model_id.split(\"/\")[-1]\n",
896
+ "batch_size = 8\n",
897
+ "gradient_accumulation_steps = 1\n",
898
+ "num_train_epochs = 10\n",
899
+ "\n"
900
+ ]
901
+ },
902
+ {
903
+ "cell_type": "code",
904
+ "execution_count": 32,
905
+ "metadata": {
906
+ "id": "cv_Zd_jDC7gj"
907
+ },
908
+ "outputs": [
909
+ {
910
+ "name": "stderr",
911
+ "output_type": "stream",
912
+ "text": [
913
+ "/home/user/Desktop/model/venv/lib/python3.11/site-packages/transformers/training_args.py:1489: FutureWarning: using `no_cuda` is deprecated and will be removed in version 5.0 of 🤗 Transformers. Use `use_cpu` instead\n",
914
+ " warnings.warn(\n"
915
+ ]
916
+ }
917
+ ],
918
+ "source": [
919
+ "training_args = TrainingArguments(\n",
920
+ " f\"{model_name}-finetuned-gtzan\",\n",
921
+ " eval_strategy=\"epoch\",\n",
922
+ " save_strategy=\"epoch\",\n",
923
+ " learning_rate=5e-5,\n",
924
+ " per_device_train_batch_size=batch_size,\n",
925
+ " gradient_accumulation_steps=gradient_accumulation_steps,\n",
926
+ " per_device_eval_batch_size=batch_size,\n",
927
+ " num_train_epochs=num_train_epochs,\n",
928
+ " warmup_ratio=0.1,\n",
929
+ " logging_steps=5,\n",
930
+ " load_best_model_at_end=True,\n",
931
+ " metric_for_best_model=\"accuracy\",\n",
932
+ " fp16=False,\n",
933
+ " push_to_hub=True,\n",
934
+ " no_cuda=True\n",
935
+ ")\n"
936
+ ]
937
+ },
938
+ {
939
+ "cell_type": "code",
940
+ "execution_count": 30,
941
+ "metadata": {
942
+ "id": "QiawSGrUExT7"
943
+ },
944
+ "outputs": [],
945
+ "source": [
946
+ "pip install evaluate"
947
+ ]
948
+ },
949
+ {
950
+ "cell_type": "code",
951
+ "execution_count": 33,
952
+ "metadata": {
953
+ "id": "LpvB8n1bEvVf"
954
+ },
955
+ "outputs": [],
956
+ "source": [
957
+ "import evaluate\n",
958
+ "import numpy as np\n",
959
+ "\n",
960
+ "metric = evaluate.load(\"accuracy\")\n",
961
+ "\n",
962
+ "\n",
963
+ "def compute_metrics(eval_pred):\n",
964
+ " \"\"\"Computes accuracy on a batch of predictions\"\"\"\n",
965
+ " predictions = np.argmax(eval_pred.predictions, axis=1)\n",
966
+ " return metric.compute(predictions=predictions, references=eval_pred.label_ids)"
967
+ ]
968
+ },
969
+ {
970
+ "cell_type": "code",
971
+ "execution_count": 34,
972
+ "metadata": {
973
+ "id": "phMqgPQxE9yO"
974
+ },
975
+ "outputs": [],
976
+ "source": [
977
+ "from transformers import Trainer\n",
978
+ "\n",
979
+ "trainer = Trainer(\n",
980
+ " model,\n",
981
+ " training_args,\n",
982
+ " train_dataset=gtzan_encoded[\"train\"],\n",
983
+ " eval_dataset=gtzan_encoded[\"test\"],\n",
984
+ " tokenizer=feature_extractor,\n",
985
+ " compute_metrics=compute_metrics,\n",
986
+ ")\n"
987
+ ]
988
+ },
989
+ {
990
+ "cell_type": "code",
991
+ "execution_count": 35,
992
+ "metadata": {
993
+ "colab": {
994
+ "base_uri": "https://localhost:8080/",
995
+ "height": 141
996
+ },
997
+ "id": "QKMe0MmDF8YA",
998
+ "outputId": "990bc6fc-e340-49df-e110-ae151885313a"
999
+ },
1000
+ "outputs": [
1001
+ {
1002
+ "data": {
1003
+ "text/html": [
1004
+ "\n",
1005
+ " <div>\n",
1006
+ " \n",
1007
+ " <progress value='1130' max='1130' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
1008
+ " [1130/1130 6:29:30, Epoch 10/10]\n",
1009
+ " </div>\n",
1010
+ " <table border=\"1\" class=\"dataframe\">\n",
1011
+ " <thead>\n",
1012
+ " <tr style=\"text-align: left;\">\n",
1013
+ " <th>Epoch</th>\n",
1014
+ " <th>Training Loss</th>\n",
1015
+ " <th>Validation Loss</th>\n",
1016
+ " <th>Accuracy</th>\n",
1017
+ " </tr>\n",
1018
+ " </thead>\n",
1019
+ " <tbody>\n",
1020
+ " <tr>\n",
1021
+ " <td>1</td>\n",
1022
+ " <td>1.977700</td>\n",
1023
+ " <td>1.902388</td>\n",
1024
+ " <td>0.530000</td>\n",
1025
+ " </tr>\n",
1026
+ " <tr>\n",
1027
+ " <td>2</td>\n",
1028
+ " <td>1.182000</td>\n",
1029
+ " <td>1.280992</td>\n",
1030
+ " <td>0.650000</td>\n",
1031
+ " </tr>\n",
1032
+ " <tr>\n",
1033
+ " <td>3</td>\n",
1034
+ " <td>1.038300</td>\n",
1035
+ " <td>1.033311</td>\n",
1036
+ " <td>0.690000</td>\n",
1037
+ " </tr>\n",
1038
+ " <tr>\n",
1039
+ " <td>4</td>\n",
1040
+ " <td>0.654200</td>\n",
1041
+ " <td>0.885210</td>\n",
1042
+ " <td>0.720000</td>\n",
1043
+ " </tr>\n",
1044
+ " <tr>\n",
1045
+ " <td>5</td>\n",
1046
+ " <td>0.553500</td>\n",
1047
+ " <td>0.713898</td>\n",
1048
+ " <td>0.800000</td>\n",
1049
+ " </tr>\n",
1050
+ " <tr>\n",
1051
+ " <td>6</td>\n",
1052
+ " <td>0.475900</td>\n",
1053
+ " <td>0.584029</td>\n",
1054
+ " <td>0.840000</td>\n",
1055
+ " </tr>\n",
1056
+ " <tr>\n",
1057
+ " <td>7</td>\n",
1058
+ " <td>0.285600</td>\n",
1059
+ " <td>0.552340</td>\n",
1060
+ " <td>0.830000</td>\n",
1061
+ " </tr>\n",
1062
+ " <tr>\n",
1063
+ " <td>8</td>\n",
1064
+ " <td>0.145000</td>\n",
1065
+ " <td>0.631408</td>\n",
1066
+ " <td>0.800000</td>\n",
1067
+ " </tr>\n",
1068
+ " <tr>\n",
1069
+ " <td>9</td>\n",
1070
+ " <td>0.269300</td>\n",
1071
+ " <td>0.572215</td>\n",
1072
+ " <td>0.820000</td>\n",
1073
+ " </tr>\n",
1074
+ " <tr>\n",
1075
+ " <td>10</td>\n",
1076
+ " <td>0.171400</td>\n",
1077
+ " <td>0.589203</td>\n",
1078
+ " <td>0.800000</td>\n",
1079
+ " </tr>\n",
1080
+ " </tbody>\n",
1081
+ "</table><p>"
1082
+ ],
1083
+ "text/plain": [
1084
+ "<IPython.core.display.HTML object>"
1085
+ ]
1086
+ },
1087
+ "metadata": {},
1088
+ "output_type": "display_data"
1089
+ },
1090
+ {
1091
+ "data": {
1092
+ "text/plain": [
1093
+ "TrainOutput(global_step=1130, training_loss=0.7772156888668516, metrics={'train_runtime': 23391.7714, 'train_samples_per_second': 0.384, 'train_steps_per_second': 0.048, 'total_flos': 6.133988274624e+17, 'train_loss': 0.7772156888668516, 'epoch': 10.0})"
1094
+ ]
1095
+ },
1096
+ "execution_count": 35,
1097
+ "metadata": {},
1098
+ "output_type": "execute_result"
1099
+ }
1100
+ ],
1101
+ "source": [
1102
+ "trainer.train()"
1103
+ ]
1104
+ },
1105
+ {
1106
+ "cell_type": "code",
1107
+ "execution_count": 36,
1108
+ "metadata": {},
1109
+ "outputs": [],
1110
+ "source": [
1111
+ "kwargs = {\n",
1112
+ " \"dataset_tags\": \"marsyas/gtzan\",\n",
1113
+ " \"dataset\": \"GTZAN\",\n",
1114
+ " \"model_name\": f\"{model_name}-finetuned-gtzan\",\n",
1115
+ " \"finetuned_from\": model_id,\n",
1116
+ " \"tasks\": \"audio-classification\",\n",
1117
+ "}\n"
1118
+ ]
1119
+ },
1120
+ {
1121
+ "cell_type": "code",
1122
+ "execution_count": 37,
1123
+ "metadata": {},
1124
+ "outputs": [
1125
+ {
1126
+ "data": {
1127
+ "text/plain": [
1128
+ "CommitInfo(commit_url='https://huggingface.co/RiKrim/distilhubert-finetuned-gtzan/commit/e461b6291a9d20525c7079e316d8df42dcbd141c', commit_message='End of training', commit_description='', oid='e461b6291a9d20525c7079e316d8df42dcbd141c', pr_url=None, pr_revision=None, pr_num=None)"
1129
+ ]
1130
+ },
1131
+ "execution_count": 37,
1132
+ "metadata": {},
1133
+ "output_type": "execute_result"
1134
+ }
1135
+ ],
1136
+ "source": [
1137
+ "trainer.push_to_hub(**kwargs)\n"
1138
+ ]
1139
+ },
1140
+ {
1141
+ "cell_type": "code",
1142
+ "execution_count": null,
1143
+ "metadata": {},
1144
+ "outputs": [],
1145
+ "source": []
1146
+ }
1147
+ ],
1148
+ "metadata": {
1149
+ "colab": {
1150
+ "provenance": []
1151
+ },
1152
+ "kernelspec": {
1153
+ "display_name": "Python 3 (ipykernel)",
1154
+ "language": "python",
1155
+ "name": "python3"
1156
+ },
1157
+ "language_info": {
1158
+ "codemirror_mode": {
1159
+ "name": "ipython",
1160
+ "version": 3
1161
+ },
1162
+ "file_extension": ".py",
1163
+ "mimetype": "text/x-python",
1164
+ "name": "python",
1165
+ "nbconvert_exporter": "python",
1166
+ "pygments_lexer": "ipython3",
1167
+ "version": "3.11.6"
1168
+ },
1169
+ "widgets": {
1170
+ "application/vnd.jupyter.widget-state+json": {
1171
+ "00bfd21bca544c47bea6da0e0ce3487f": {
1172
+ "model_module": "@jupyter-widgets/base",
1173
+ "model_module_version": "1.2.0",
1174
+ "model_name": "LayoutModel",
1175
+ "state": {
1176
+ "_model_module": "@jupyter-widgets/base",
1177
+ "_model_module_version": "1.2.0",
1178
+ "_model_name": "LayoutModel",
1179
+ "_view_count": null,
1180
+ "_view_module": "@jupyter-widgets/base",
1181
+ "_view_module_version": "1.2.0",
1182
+ "_view_name": "LayoutView",
1183
+ "align_content": null,
1184
+ "align_items": null,
1185
+ "align_self": null,
1186
+ "border": null,
1187
+ "bottom": null,
1188
+ "display": null,
1189
+ "flex": null,
1190
+ "flex_flow": null,
1191
+ "grid_area": null,
1192
+ "grid_auto_columns": null,
1193
+ "grid_auto_flow": null,
1194
+ "grid_auto_rows": null,
1195
+ "grid_column": null,
1196
+ "grid_gap": null,
1197
+ "grid_row": null,
1198
+ "grid_template_areas": null,
1199
+ "grid_template_columns": null,
1200
+ "grid_template_rows": null,
1201
+ "height": null,
1202
+ "justify_content": null,
1203
+ "justify_items": null,
1204
+ "left": null,
1205
+ "margin": null,
1206
+ "max_height": null,
1207
+ "max_width": null,
1208
+ "min_height": null,
1209
+ "min_width": null,
1210
+ "object_fit": null,
1211
+ "object_position": null,
1212
+ "order": null,
1213
+ "overflow": null,
1214
+ "overflow_x": null,
1215
+ "overflow_y": null,
1216
+ "padding": null,
1217
+ "right": null,
1218
+ "top": null,
1219
+ "visibility": null,
1220
+ "width": null
1221
+ }
1222
+ },
1223
+ "046b245d59fa456c806d3a74e16e6daa": {
1224
+ "model_module": "@jupyter-widgets/controls",
1225
+ "model_module_version": "1.5.0",
1226
+ "model_name": "DescriptionStyleModel",
1227
+ "state": {
1228
+ "_model_module": "@jupyter-widgets/controls",
1229
+ "_model_module_version": "1.5.0",
1230
+ "_model_name": "DescriptionStyleModel",
1231
+ "_view_count": null,
1232
+ "_view_module": "@jupyter-widgets/base",
1233
+ "_view_module_version": "1.2.0",
1234
+ "_view_name": "StyleView",
1235
+ "description_width": ""
1236
+ }
1237
+ },
1238
+ "0dda3266d3ea493e83e3b1cf47f6524e": {
1239
+ "model_module": "@jupyter-widgets/controls",
1240
+ "model_module_version": "1.5.0",
1241
+ "model_name": "DescriptionStyleModel",
1242
+ "state": {
1243
+ "_model_module": "@jupyter-widgets/controls",
1244
+ "_model_module_version": "1.5.0",
1245
+ "_model_name": "DescriptionStyleModel",
1246
+ "_view_count": null,
1247
+ "_view_module": "@jupyter-widgets/base",
1248
+ "_view_module_version": "1.2.0",
1249
+ "_view_name": "StyleView",
1250
+ "description_width": ""
1251
+ }
1252
+ },
1253
+ "216d9091b816416f81033ef201d98bea": {
1254
+ "model_module": "@jupyter-widgets/controls",
1255
+ "model_module_version": "1.5.0",
1256
+ "model_name": "DescriptionStyleModel",
1257
+ "state": {
1258
+ "_model_module": "@jupyter-widgets/controls",
1259
+ "_model_module_version": "1.5.0",
1260
+ "_model_name": "DescriptionStyleModel",
1261
+ "_view_count": null,
1262
+ "_view_module": "@jupyter-widgets/base",
1263
+ "_view_module_version": "1.2.0",
1264
+ "_view_name": "StyleView",
1265
+ "description_width": ""
1266
+ }
1267
+ },
1268
+ "227494428333441b891020e6f87b338b": {
1269
+ "model_module": "@jupyter-widgets/controls",
1270
+ "model_module_version": "1.5.0",
1271
+ "model_name": "HTMLModel",
1272
+ "state": {
1273
+ "_dom_classes": [],
1274
+ "_model_module": "@jupyter-widgets/controls",
1275
+ "_model_module_version": "1.5.0",
1276
+ "_model_name": "HTMLModel",
1277
+ "_view_count": null,
1278
+ "_view_module": "@jupyter-widgets/controls",
1279
+ "_view_module_version": "1.5.0",
1280
+ "_view_name": "HTMLView",
1281
+ "description": "",
1282
+ "description_tooltip": null,
1283
+ "layout": "IPY_MODEL_fc03fa730876435487990cec90250e25",
1284
+ "placeholder": "​",
1285
+ "style": "IPY_MODEL_c1d6265183ba43d2935f5feff79187b7",
1286
+ "value": "<center> <img\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.svg\nalt='Hugging Face'> <br> Copy a token from <a\nhref=\"https://huggingface.co/settings/tokens\" target=\"_blank\">your Hugging Face\ntokens page</a> and paste it below. <br> Immediately click login after copying\nyour token or it might be stored in plain text in this notebook file. </center>"
1287
+ }
1288
+ },
1289
+ "289042798aa0494282fd02f8253e8764": {
1290
+ "model_module": "@jupyter-widgets/controls",
1291
+ "model_module_version": "1.5.0",
1292
+ "model_name": "DescriptionStyleModel",
1293
+ "state": {
1294
+ "_model_module": "@jupyter-widgets/controls",
1295
+ "_model_module_version": "1.5.0",
1296
+ "_model_name": "DescriptionStyleModel",
1297
+ "_view_count": null,
1298
+ "_view_module": "@jupyter-widgets/base",
1299
+ "_view_module_version": "1.2.0",
1300
+ "_view_name": "StyleView",
1301
+ "description_width": ""
1302
+ }
1303
+ },
1304
+ "30df2beaf92d4d4ea31e5501918f07ba": {
1305
+ "model_module": "@jupyter-widgets/base",
1306
+ "model_module_version": "1.2.0",
1307
+ "model_name": "LayoutModel",
1308
+ "state": {
1309
+ "_model_module": "@jupyter-widgets/base",
1310
+ "_model_module_version": "1.2.0",
1311
+ "_model_name": "LayoutModel",
1312
+ "_view_count": null,
1313
+ "_view_module": "@jupyter-widgets/base",
1314
+ "_view_module_version": "1.2.0",
1315
+ "_view_name": "LayoutView",
1316
+ "align_content": null,
1317
+ "align_items": null,
1318
+ "align_self": null,
1319
+ "border": null,
1320
+ "bottom": null,
1321
+ "display": null,
1322
+ "flex": null,
1323
+ "flex_flow": null,
1324
+ "grid_area": null,
1325
+ "grid_auto_columns": null,
1326
+ "grid_auto_flow": null,
1327
+ "grid_auto_rows": null,
1328
+ "grid_column": null,
1329
+ "grid_gap": null,
1330
+ "grid_row": null,
1331
+ "grid_template_areas": null,
1332
+ "grid_template_columns": null,
1333
+ "grid_template_rows": null,
1334
+ "height": null,
1335
+ "justify_content": null,
1336
+ "justify_items": null,
1337
+ "left": null,
1338
+ "margin": null,
1339
+ "max_height": null,
1340
+ "max_width": null,
1341
+ "min_height": null,
1342
+ "min_width": null,
1343
+ "object_fit": null,
1344
+ "object_position": null,
1345
+ "order": null,
1346
+ "overflow": null,
1347
+ "overflow_x": null,
1348
+ "overflow_y": null,
1349
+ "padding": null,
1350
+ "right": null,
1351
+ "top": null,
1352
+ "visibility": null,
1353
+ "width": null
1354
+ }
1355
+ },
1356
+ "335b02d36d1d4195a6bae34d480c8e5c": {
1357
+ "model_module": "@jupyter-widgets/controls",
1358
+ "model_module_version": "1.5.0",
1359
+ "model_name": "DescriptionStyleModel",
1360
+ "state": {
1361
+ "_model_module": "@jupyter-widgets/controls",
1362
+ "_model_module_version": "1.5.0",
1363
+ "_model_name": "DescriptionStyleModel",
1364
+ "_view_count": null,
1365
+ "_view_module": "@jupyter-widgets/base",
1366
+ "_view_module_version": "1.2.0",
1367
+ "_view_name": "StyleView",
1368
+ "description_width": ""
1369
+ }
1370
+ },
1371
+ "50ba98fdb9ed47d1b6108c7aa4f1b088": {
1372
+ "model_module": "@jupyter-widgets/controls",
1373
+ "model_module_version": "1.5.0",
1374
+ "model_name": "ButtonModel",
1375
+ "state": {
1376
+ "_dom_classes": [],
1377
+ "_model_module": "@jupyter-widgets/controls",
1378
+ "_model_module_version": "1.5.0",
1379
+ "_model_name": "ButtonModel",
1380
+ "_view_count": null,
1381
+ "_view_module": "@jupyter-widgets/controls",
1382
+ "_view_module_version": "1.5.0",
1383
+ "_view_name": "ButtonView",
1384
+ "button_style": "",
1385
+ "description": "Login",
1386
+ "disabled": false,
1387
+ "icon": "",
1388
+ "layout": "IPY_MODEL_8b6b79964e2042d8a853510727e2e34f",
1389
+ "style": "IPY_MODEL_5640b91b99ed4e3c8182266e52a86ca8",
1390
+ "tooltip": ""
1391
+ }
1392
+ },
1393
+ "5326b1b1e1094e55b7f1f3ceeb44621c": {
1394
+ "model_module": "@jupyter-widgets/controls",
1395
+ "model_module_version": "1.5.0",
1396
+ "model_name": "HTMLModel",
1397
+ "state": {
1398
+ "_dom_classes": [],
1399
+ "_model_module": "@jupyter-widgets/controls",
1400
+ "_model_module_version": "1.5.0",
1401
+ "_model_name": "HTMLModel",
1402
+ "_view_count": null,
1403
+ "_view_module": "@jupyter-widgets/controls",
1404
+ "_view_module_version": "1.5.0",
1405
+ "_view_name": "HTMLView",
1406
+ "description": "",
1407
+ "description_tooltip": null,
1408
+ "layout": "IPY_MODEL_5b7df71497b84943a7fabd68b9fdf031",
1409
+ "placeholder": "​",
1410
+ "style": "IPY_MODEL_faf2939133e54dffaa208a75c257d0d3",
1411
+ "value": "\n<b>Pro Tip:</b> If you don't already have one, you can create a dedicated\n'notebooks' token with 'write' access, that you can then easily reuse for all\nnotebooks. </center>"
1412
+ }
1413
+ },
1414
+ "5640b91b99ed4e3c8182266e52a86ca8": {
1415
+ "model_module": "@jupyter-widgets/controls",
1416
+ "model_module_version": "1.5.0",
1417
+ "model_name": "ButtonStyleModel",
1418
+ "state": {
1419
+ "_model_module": "@jupyter-widgets/controls",
1420
+ "_model_module_version": "1.5.0",
1421
+ "_model_name": "ButtonStyleModel",
1422
+ "_view_count": null,
1423
+ "_view_module": "@jupyter-widgets/base",
1424
+ "_view_module_version": "1.2.0",
1425
+ "_view_name": "StyleView",
1426
+ "button_color": null,
1427
+ "font_weight": ""
1428
+ }
1429
+ },
1430
+ "5b7df71497b84943a7fabd68b9fdf031": {
1431
+ "model_module": "@jupyter-widgets/base",
1432
+ "model_module_version": "1.2.0",
1433
+ "model_name": "LayoutModel",
1434
+ "state": {
1435
+ "_model_module": "@jupyter-widgets/base",
1436
+ "_model_module_version": "1.2.0",
1437
+ "_model_name": "LayoutModel",
1438
+ "_view_count": null,
1439
+ "_view_module": "@jupyter-widgets/base",
1440
+ "_view_module_version": "1.2.0",
1441
+ "_view_name": "LayoutView",
1442
+ "align_content": null,
1443
+ "align_items": null,
1444
+ "align_self": null,
1445
+ "border": null,
1446
+ "bottom": null,
1447
+ "display": null,
1448
+ "flex": null,
1449
+ "flex_flow": null,
1450
+ "grid_area": null,
1451
+ "grid_auto_columns": null,
1452
+ "grid_auto_flow": null,
1453
+ "grid_auto_rows": null,
1454
+ "grid_column": null,
1455
+ "grid_gap": null,
1456
+ "grid_row": null,
1457
+ "grid_template_areas": null,
1458
+ "grid_template_columns": null,
1459
+ "grid_template_rows": null,
1460
+ "height": null,
1461
+ "justify_content": null,
1462
+ "justify_items": null,
1463
+ "left": null,
1464
+ "margin": null,
1465
+ "max_height": null,
1466
+ "max_width": null,
1467
+ "min_height": null,
1468
+ "min_width": null,
1469
+ "object_fit": null,
1470
+ "object_position": null,
1471
+ "order": null,
1472
+ "overflow": null,
1473
+ "overflow_x": null,
1474
+ "overflow_y": null,
1475
+ "padding": null,
1476
+ "right": null,
1477
+ "top": null,
1478
+ "visibility": null,
1479
+ "width": null
1480
+ }
1481
+ },
1482
+ "5f5bce14ffd54ce6aaddf7eee06b0780": {
1483
+ "model_module": "@jupyter-widgets/controls",
1484
+ "model_module_version": "1.5.0",
1485
+ "model_name": "VBoxModel",
1486
+ "state": {
1487
+ "_dom_classes": [],
1488
+ "_model_module": "@jupyter-widgets/controls",
1489
+ "_model_module_version": "1.5.0",
1490
+ "_model_name": "VBoxModel",
1491
+ "_view_count": null,
1492
+ "_view_module": "@jupyter-widgets/controls",
1493
+ "_view_module_version": "1.5.0",
1494
+ "_view_name": "VBoxView",
1495
+ "box_style": "",
1496
+ "children": [
1497
+ "IPY_MODEL_5fe3ce149760495482ed27d4437f948e",
1498
+ "IPY_MODEL_cdd0a406c34c49d495c83768bf277552",
1499
+ "IPY_MODEL_d565aba281334aefa921962b6f641379",
1500
+ "IPY_MODEL_ddbd15cd160847d7ad8c373c027bea5e"
1501
+ ],
1502
+ "layout": "IPY_MODEL_7bbce34b8ce5468eb7ef98efcba9ae70"
1503
+ }
1504
+ },
1505
+ "5fe3ce149760495482ed27d4437f948e": {
1506
+ "model_module": "@jupyter-widgets/controls",
1507
+ "model_module_version": "1.5.0",
1508
+ "model_name": "LabelModel",
1509
+ "state": {
1510
+ "_dom_classes": [],
1511
+ "_model_module": "@jupyter-widgets/controls",
1512
+ "_model_module_version": "1.5.0",
1513
+ "_model_name": "LabelModel",
1514
+ "_view_count": null,
1515
+ "_view_module": "@jupyter-widgets/controls",
1516
+ "_view_module_version": "1.5.0",
1517
+ "_view_name": "LabelView",
1518
+ "description": "",
1519
+ "description_tooltip": null,
1520
+ "layout": "IPY_MODEL_6b057e0d7c404cf1bea422f48e4781e8",
1521
+ "placeholder": "​",
1522
+ "style": "IPY_MODEL_f4bdef5898794847bc0c97ca759b8037",
1523
+ "value": "Token is valid (permission: fineGrained)."
1524
+ }
1525
+ },
1526
+ "636229e44fd44ad699a1eaf2339752ad": {
1527
+ "model_module": "@jupyter-widgets/base",
1528
+ "model_module_version": "1.2.0",
1529
+ "model_name": "LayoutModel",
1530
+ "state": {
1531
+ "_model_module": "@jupyter-widgets/base",
1532
+ "_model_module_version": "1.2.0",
1533
+ "_model_name": "LayoutModel",
1534
+ "_view_count": null,
1535
+ "_view_module": "@jupyter-widgets/base",
1536
+ "_view_module_version": "1.2.0",
1537
+ "_view_name": "LayoutView",
1538
+ "align_content": null,
1539
+ "align_items": null,
1540
+ "align_self": null,
1541
+ "border": null,
1542
+ "bottom": null,
1543
+ "display": null,
1544
+ "flex": null,
1545
+ "flex_flow": null,
1546
+ "grid_area": null,
1547
+ "grid_auto_columns": null,
1548
+ "grid_auto_flow": null,
1549
+ "grid_auto_rows": null,
1550
+ "grid_column": null,
1551
+ "grid_gap": null,
1552
+ "grid_row": null,
1553
+ "grid_template_areas": null,
1554
+ "grid_template_columns": null,
1555
+ "grid_template_rows": null,
1556
+ "height": null,
1557
+ "justify_content": null,
1558
+ "justify_items": null,
1559
+ "left": null,
1560
+ "margin": null,
1561
+ "max_height": null,
1562
+ "max_width": null,
1563
+ "min_height": null,
1564
+ "min_width": null,
1565
+ "object_fit": null,
1566
+ "object_position": null,
1567
+ "order": null,
1568
+ "overflow": null,
1569
+ "overflow_x": null,
1570
+ "overflow_y": null,
1571
+ "padding": null,
1572
+ "right": null,
1573
+ "top": null,
1574
+ "visibility": null,
1575
+ "width": null
1576
+ }
1577
+ },
1578
+ "6a028ea873874b20b6cf7928ccd84538": {
1579
+ "model_module": "@jupyter-widgets/base",
1580
+ "model_module_version": "1.2.0",
1581
+ "model_name": "LayoutModel",
1582
+ "state": {
1583
+ "_model_module": "@jupyter-widgets/base",
1584
+ "_model_module_version": "1.2.0",
1585
+ "_model_name": "LayoutModel",
1586
+ "_view_count": null,
1587
+ "_view_module": "@jupyter-widgets/base",
1588
+ "_view_module_version": "1.2.0",
1589
+ "_view_name": "LayoutView",
1590
+ "align_content": null,
1591
+ "align_items": null,
1592
+ "align_self": null,
1593
+ "border": null,
1594
+ "bottom": null,
1595
+ "display": null,
1596
+ "flex": null,
1597
+ "flex_flow": null,
1598
+ "grid_area": null,
1599
+ "grid_auto_columns": null,
1600
+ "grid_auto_flow": null,
1601
+ "grid_auto_rows": null,
1602
+ "grid_column": null,
1603
+ "grid_gap": null,
1604
+ "grid_row": null,
1605
+ "grid_template_areas": null,
1606
+ "grid_template_columns": null,
1607
+ "grid_template_rows": null,
1608
+ "height": null,
1609
+ "justify_content": null,
1610
+ "justify_items": null,
1611
+ "left": null,
1612
+ "margin": null,
1613
+ "max_height": null,
1614
+ "max_width": null,
1615
+ "min_height": null,
1616
+ "min_width": null,
1617
+ "object_fit": null,
1618
+ "object_position": null,
1619
+ "order": null,
1620
+ "overflow": null,
1621
+ "overflow_x": null,
1622
+ "overflow_y": null,
1623
+ "padding": null,
1624
+ "right": null,
1625
+ "top": null,
1626
+ "visibility": null,
1627
+ "width": null
1628
+ }
1629
+ },
1630
+ "6b057e0d7c404cf1bea422f48e4781e8": {
1631
+ "model_module": "@jupyter-widgets/base",
1632
+ "model_module_version": "1.2.0",
1633
+ "model_name": "LayoutModel",
1634
+ "state": {
1635
+ "_model_module": "@jupyter-widgets/base",
1636
+ "_model_module_version": "1.2.0",
1637
+ "_model_name": "LayoutModel",
1638
+ "_view_count": null,
1639
+ "_view_module": "@jupyter-widgets/base",
1640
+ "_view_module_version": "1.2.0",
1641
+ "_view_name": "LayoutView",
1642
+ "align_content": null,
1643
+ "align_items": null,
1644
+ "align_self": null,
1645
+ "border": null,
1646
+ "bottom": null,
1647
+ "display": null,
1648
+ "flex": null,
1649
+ "flex_flow": null,
1650
+ "grid_area": null,
1651
+ "grid_auto_columns": null,
1652
+ "grid_auto_flow": null,
1653
+ "grid_auto_rows": null,
1654
+ "grid_column": null,
1655
+ "grid_gap": null,
1656
+ "grid_row": null,
1657
+ "grid_template_areas": null,
1658
+ "grid_template_columns": null,
1659
+ "grid_template_rows": null,
1660
+ "height": null,
1661
+ "justify_content": null,
1662
+ "justify_items": null,
1663
+ "left": null,
1664
+ "margin": null,
1665
+ "max_height": null,
1666
+ "max_width": null,
1667
+ "min_height": null,
1668
+ "min_width": null,
1669
+ "object_fit": null,
1670
+ "object_position": null,
1671
+ "order": null,
1672
+ "overflow": null,
1673
+ "overflow_x": null,
1674
+ "overflow_y": null,
1675
+ "padding": null,
1676
+ "right": null,
1677
+ "top": null,
1678
+ "visibility": null,
1679
+ "width": null
1680
+ }
1681
+ },
1682
+ "7bbce34b8ce5468eb7ef98efcba9ae70": {
1683
+ "model_module": "@jupyter-widgets/base",
1684
+ "model_module_version": "1.2.0",
1685
+ "model_name": "LayoutModel",
1686
+ "state": {
1687
+ "_model_module": "@jupyter-widgets/base",
1688
+ "_model_module_version": "1.2.0",
1689
+ "_model_name": "LayoutModel",
1690
+ "_view_count": null,
1691
+ "_view_module": "@jupyter-widgets/base",
1692
+ "_view_module_version": "1.2.0",
1693
+ "_view_name": "LayoutView",
1694
+ "align_content": null,
1695
+ "align_items": "center",
1696
+ "align_self": null,
1697
+ "border": null,
1698
+ "bottom": null,
1699
+ "display": "flex",
1700
+ "flex": null,
1701
+ "flex_flow": "column",
1702
+ "grid_area": null,
1703
+ "grid_auto_columns": null,
1704
+ "grid_auto_flow": null,
1705
+ "grid_auto_rows": null,
1706
+ "grid_column": null,
1707
+ "grid_gap": null,
1708
+ "grid_row": null,
1709
+ "grid_template_areas": null,
1710
+ "grid_template_columns": null,
1711
+ "grid_template_rows": null,
1712
+ "height": null,
1713
+ "justify_content": null,
1714
+ "justify_items": null,
1715
+ "left": null,
1716
+ "margin": null,
1717
+ "max_height": null,
1718
+ "max_width": null,
1719
+ "min_height": null,
1720
+ "min_width": null,
1721
+ "object_fit": null,
1722
+ "object_position": null,
1723
+ "order": null,
1724
+ "overflow": null,
1725
+ "overflow_x": null,
1726
+ "overflow_y": null,
1727
+ "padding": null,
1728
+ "right": null,
1729
+ "top": null,
1730
+ "visibility": null,
1731
+ "width": "50%"
1732
+ }
1733
+ },
1734
+ "7c014d81820d4f598a26a9c28a558a0c": {
1735
+ "model_module": "@jupyter-widgets/controls",
1736
+ "model_module_version": "1.5.0",
1737
+ "model_name": "LabelModel",
1738
+ "state": {
1739
+ "_dom_classes": [],
1740
+ "_model_module": "@jupyter-widgets/controls",
1741
+ "_model_module_version": "1.5.0",
1742
+ "_model_name": "LabelModel",
1743
+ "_view_count": null,
1744
+ "_view_module": "@jupyter-widgets/controls",
1745
+ "_view_module_version": "1.5.0",
1746
+ "_view_name": "LabelView",
1747
+ "description": "",
1748
+ "description_tooltip": null,
1749
+ "layout": "IPY_MODEL_636229e44fd44ad699a1eaf2339752ad",
1750
+ "placeholder": "​",
1751
+ "style": "IPY_MODEL_335b02d36d1d4195a6bae34d480c8e5c",
1752
+ "value": "Connecting..."
1753
+ }
1754
+ },
1755
+ "8b6b79964e2042d8a853510727e2e34f": {
1756
+ "model_module": "@jupyter-widgets/base",
1757
+ "model_module_version": "1.2.0",
1758
+ "model_name": "LayoutModel",
1759
+ "state": {
1760
+ "_model_module": "@jupyter-widgets/base",
1761
+ "_model_module_version": "1.2.0",
1762
+ "_model_name": "LayoutModel",
1763
+ "_view_count": null,
1764
+ "_view_module": "@jupyter-widgets/base",
1765
+ "_view_module_version": "1.2.0",
1766
+ "_view_name": "LayoutView",
1767
+ "align_content": null,
1768
+ "align_items": null,
1769
+ "align_self": null,
1770
+ "border": null,
1771
+ "bottom": null,
1772
+ "display": null,
1773
+ "flex": null,
1774
+ "flex_flow": null,
1775
+ "grid_area": null,
1776
+ "grid_auto_columns": null,
1777
+ "grid_auto_flow": null,
1778
+ "grid_auto_rows": null,
1779
+ "grid_column": null,
1780
+ "grid_gap": null,
1781
+ "grid_row": null,
1782
+ "grid_template_areas": null,
1783
+ "grid_template_columns": null,
1784
+ "grid_template_rows": null,
1785
+ "height": null,
1786
+ "justify_content": null,
1787
+ "justify_items": null,
1788
+ "left": null,
1789
+ "margin": null,
1790
+ "max_height": null,
1791
+ "max_width": null,
1792
+ "min_height": null,
1793
+ "min_width": null,
1794
+ "object_fit": null,
1795
+ "object_position": null,
1796
+ "order": null,
1797
+ "overflow": null,
1798
+ "overflow_x": null,
1799
+ "overflow_y": null,
1800
+ "padding": null,
1801
+ "right": null,
1802
+ "top": null,
1803
+ "visibility": null,
1804
+ "width": null
1805
+ }
1806
+ },
1807
+ "a0aca0338dec449b88c8285d1f0cbef7": {
1808
+ "model_module": "@jupyter-widgets/controls",
1809
+ "model_module_version": "1.5.0",
1810
+ "model_name": "CheckboxModel",
1811
+ "state": {
1812
+ "_dom_classes": [],
1813
+ "_model_module": "@jupyter-widgets/controls",
1814
+ "_model_module_version": "1.5.0",
1815
+ "_model_name": "CheckboxModel",
1816
+ "_view_count": null,
1817
+ "_view_module": "@jupyter-widgets/controls",
1818
+ "_view_module_version": "1.5.0",
1819
+ "_view_name": "CheckboxView",
1820
+ "description": "Add token as git credential?",
1821
+ "description_tooltip": null,
1822
+ "disabled": false,
1823
+ "indent": true,
1824
+ "layout": "IPY_MODEL_30df2beaf92d4d4ea31e5501918f07ba",
1825
+ "style": "IPY_MODEL_d96f88c9819440d29611539bd2890260",
1826
+ "value": true
1827
+ }
1828
+ },
1829
+ "c1d6265183ba43d2935f5feff79187b7": {
1830
+ "model_module": "@jupyter-widgets/controls",
1831
+ "model_module_version": "1.5.0",
1832
+ "model_name": "DescriptionStyleModel",
1833
+ "state": {
1834
+ "_model_module": "@jupyter-widgets/controls",
1835
+ "_model_module_version": "1.5.0",
1836
+ "_model_name": "DescriptionStyleModel",
1837
+ "_view_count": null,
1838
+ "_view_module": "@jupyter-widgets/base",
1839
+ "_view_module_version": "1.2.0",
1840
+ "_view_name": "StyleView",
1841
+ "description_width": ""
1842
+ }
1843
+ },
1844
+ "c7ff28fb537347e09acaf84f23eea5ba": {
1845
+ "model_module": "@jupyter-widgets/base",
1846
+ "model_module_version": "1.2.0",
1847
+ "model_name": "LayoutModel",
1848
+ "state": {
1849
+ "_model_module": "@jupyter-widgets/base",
1850
+ "_model_module_version": "1.2.0",
1851
+ "_model_name": "LayoutModel",
1852
+ "_view_count": null,
1853
+ "_view_module": "@jupyter-widgets/base",
1854
+ "_view_module_version": "1.2.0",
1855
+ "_view_name": "LayoutView",
1856
+ "align_content": null,
1857
+ "align_items": null,
1858
+ "align_self": null,
1859
+ "border": null,
1860
+ "bottom": null,
1861
+ "display": null,
1862
+ "flex": null,
1863
+ "flex_flow": null,
1864
+ "grid_area": null,
1865
+ "grid_auto_columns": null,
1866
+ "grid_auto_flow": null,
1867
+ "grid_auto_rows": null,
1868
+ "grid_column": null,
1869
+ "grid_gap": null,
1870
+ "grid_row": null,
1871
+ "grid_template_areas": null,
1872
+ "grid_template_columns": null,
1873
+ "grid_template_rows": null,
1874
+ "height": null,
1875
+ "justify_content": null,
1876
+ "justify_items": null,
1877
+ "left": null,
1878
+ "margin": null,
1879
+ "max_height": null,
1880
+ "max_width": null,
1881
+ "min_height": null,
1882
+ "min_width": null,
1883
+ "object_fit": null,
1884
+ "object_position": null,
1885
+ "order": null,
1886
+ "overflow": null,
1887
+ "overflow_x": null,
1888
+ "overflow_y": null,
1889
+ "padding": null,
1890
+ "right": null,
1891
+ "top": null,
1892
+ "visibility": null,
1893
+ "width": null
1894
+ }
1895
+ },
1896
+ "cdd0a406c34c49d495c83768bf277552": {
1897
+ "model_module": "@jupyter-widgets/controls",
1898
+ "model_module_version": "1.5.0",
1899
+ "model_name": "LabelModel",
1900
+ "state": {
1901
+ "_dom_classes": [],
1902
+ "_model_module": "@jupyter-widgets/controls",
1903
+ "_model_module_version": "1.5.0",
1904
+ "_model_name": "LabelModel",
1905
+ "_view_count": null,
1906
+ "_view_module": "@jupyter-widgets/controls",
1907
+ "_view_module_version": "1.5.0",
1908
+ "_view_name": "LabelView",
1909
+ "description": "",
1910
+ "description_tooltip": null,
1911
+ "layout": "IPY_MODEL_6a028ea873874b20b6cf7928ccd84538",
1912
+ "placeholder": "​",
1913
+ "style": "IPY_MODEL_046b245d59fa456c806d3a74e16e6daa",
1914
+ "value": "Your token has been saved in your configured git credential helpers (store)."
1915
+ }
1916
+ },
1917
+ "d565aba281334aefa921962b6f641379": {
1918
+ "model_module": "@jupyter-widgets/controls",
1919
+ "model_module_version": "1.5.0",
1920
+ "model_name": "LabelModel",
1921
+ "state": {
1922
+ "_dom_classes": [],
1923
+ "_model_module": "@jupyter-widgets/controls",
1924
+ "_model_module_version": "1.5.0",
1925
+ "_model_name": "LabelModel",
1926
+ "_view_count": null,
1927
+ "_view_module": "@jupyter-widgets/controls",
1928
+ "_view_module_version": "1.5.0",
1929
+ "_view_name": "LabelView",
1930
+ "description": "",
1931
+ "description_tooltip": null,
1932
+ "layout": "IPY_MODEL_ff30d5707c0048058bf66f4d7cacaa53",
1933
+ "placeholder": "​",
1934
+ "style": "IPY_MODEL_289042798aa0494282fd02f8253e8764",
1935
+ "value": "Your token has been saved to /root/.cache/huggingface/token"
1936
+ }
1937
+ },
1938
+ "d96f88c9819440d29611539bd2890260": {
1939
+ "model_module": "@jupyter-widgets/controls",
1940
+ "model_module_version": "1.5.0",
1941
+ "model_name": "DescriptionStyleModel",
1942
+ "state": {
1943
+ "_model_module": "@jupyter-widgets/controls",
1944
+ "_model_module_version": "1.5.0",
1945
+ "_model_name": "DescriptionStyleModel",
1946
+ "_view_count": null,
1947
+ "_view_module": "@jupyter-widgets/base",
1948
+ "_view_module_version": "1.2.0",
1949
+ "_view_name": "StyleView",
1950
+ "description_width": ""
1951
+ }
1952
+ },
1953
+ "ddbd15cd160847d7ad8c373c027bea5e": {
1954
+ "model_module": "@jupyter-widgets/controls",
1955
+ "model_module_version": "1.5.0",
1956
+ "model_name": "LabelModel",
1957
+ "state": {
1958
+ "_dom_classes": [],
1959
+ "_model_module": "@jupyter-widgets/controls",
1960
+ "_model_module_version": "1.5.0",
1961
+ "_model_name": "LabelModel",
1962
+ "_view_count": null,
1963
+ "_view_module": "@jupyter-widgets/controls",
1964
+ "_view_module_version": "1.5.0",
1965
+ "_view_name": "LabelView",
1966
+ "description": "",
1967
+ "description_tooltip": null,
1968
+ "layout": "IPY_MODEL_c7ff28fb537347e09acaf84f23eea5ba",
1969
+ "placeholder": "​",
1970
+ "style": "IPY_MODEL_0dda3266d3ea493e83e3b1cf47f6524e",
1971
+ "value": "Login successful"
1972
+ }
1973
+ },
1974
+ "f0bb2256813f416194677eb338417868": {
1975
+ "model_module": "@jupyter-widgets/controls",
1976
+ "model_module_version": "1.5.0",
1977
+ "model_name": "PasswordModel",
1978
+ "state": {
1979
+ "_dom_classes": [],
1980
+ "_model_module": "@jupyter-widgets/controls",
1981
+ "_model_module_version": "1.5.0",
1982
+ "_model_name": "PasswordModel",
1983
+ "_view_count": null,
1984
+ "_view_module": "@jupyter-widgets/controls",
1985
+ "_view_module_version": "1.5.0",
1986
+ "_view_name": "PasswordView",
1987
+ "continuous_update": true,
1988
+ "description": "Token:",
1989
+ "description_tooltip": null,
1990
+ "disabled": false,
1991
+ "layout": "IPY_MODEL_00bfd21bca544c47bea6da0e0ce3487f",
1992
+ "placeholder": "​",
1993
+ "style": "IPY_MODEL_216d9091b816416f81033ef201d98bea",
1994
+ "value": ""
1995
+ }
1996
+ },
1997
+ "f4bdef5898794847bc0c97ca759b8037": {
1998
+ "model_module": "@jupyter-widgets/controls",
1999
+ "model_module_version": "1.5.0",
2000
+ "model_name": "DescriptionStyleModel",
2001
+ "state": {
2002
+ "_model_module": "@jupyter-widgets/controls",
2003
+ "_model_module_version": "1.5.0",
2004
+ "_model_name": "DescriptionStyleModel",
2005
+ "_view_count": null,
2006
+ "_view_module": "@jupyter-widgets/base",
2007
+ "_view_module_version": "1.2.0",
2008
+ "_view_name": "StyleView",
2009
+ "description_width": ""
2010
+ }
2011
+ },
2012
+ "faf2939133e54dffaa208a75c257d0d3": {
2013
+ "model_module": "@jupyter-widgets/controls",
2014
+ "model_module_version": "1.5.0",
2015
+ "model_name": "DescriptionStyleModel",
2016
+ "state": {
2017
+ "_model_module": "@jupyter-widgets/controls",
2018
+ "_model_module_version": "1.5.0",
2019
+ "_model_name": "DescriptionStyleModel",
2020
+ "_view_count": null,
2021
+ "_view_module": "@jupyter-widgets/base",
2022
+ "_view_module_version": "1.2.0",
2023
+ "_view_name": "StyleView",
2024
+ "description_width": ""
2025
+ }
2026
+ },
2027
+ "fc03fa730876435487990cec90250e25": {
2028
+ "model_module": "@jupyter-widgets/base",
2029
+ "model_module_version": "1.2.0",
2030
+ "model_name": "LayoutModel",
2031
+ "state": {
2032
+ "_model_module": "@jupyter-widgets/base",
2033
+ "_model_module_version": "1.2.0",
2034
+ "_model_name": "LayoutModel",
2035
+ "_view_count": null,
2036
+ "_view_module": "@jupyter-widgets/base",
2037
+ "_view_module_version": "1.2.0",
2038
+ "_view_name": "LayoutView",
2039
+ "align_content": null,
2040
+ "align_items": null,
2041
+ "align_self": null,
2042
+ "border": null,
2043
+ "bottom": null,
2044
+ "display": null,
2045
+ "flex": null,
2046
+ "flex_flow": null,
2047
+ "grid_area": null,
2048
+ "grid_auto_columns": null,
2049
+ "grid_auto_flow": null,
2050
+ "grid_auto_rows": null,
2051
+ "grid_column": null,
2052
+ "grid_gap": null,
2053
+ "grid_row": null,
2054
+ "grid_template_areas": null,
2055
+ "grid_template_columns": null,
2056
+ "grid_template_rows": null,
2057
+ "height": null,
2058
+ "justify_content": null,
2059
+ "justify_items": null,
2060
+ "left": null,
2061
+ "margin": null,
2062
+ "max_height": null,
2063
+ "max_width": null,
2064
+ "min_height": null,
2065
+ "min_width": null,
2066
+ "object_fit": null,
2067
+ "object_position": null,
2068
+ "order": null,
2069
+ "overflow": null,
2070
+ "overflow_x": null,
2071
+ "overflow_y": null,
2072
+ "padding": null,
2073
+ "right": null,
2074
+ "top": null,
2075
+ "visibility": null,
2076
+ "width": null
2077
+ }
2078
+ },
2079
+ "ff30d5707c0048058bf66f4d7cacaa53": {
2080
+ "model_module": "@jupyter-widgets/base",
2081
+ "model_module_version": "1.2.0",
2082
+ "model_name": "LayoutModel",
2083
+ "state": {
2084
+ "_model_module": "@jupyter-widgets/base",
2085
+ "_model_module_version": "1.2.0",
2086
+ "_model_name": "LayoutModel",
2087
+ "_view_count": null,
2088
+ "_view_module": "@jupyter-widgets/base",
2089
+ "_view_module_version": "1.2.0",
2090
+ "_view_name": "LayoutView",
2091
+ "align_content": null,
2092
+ "align_items": null,
2093
+ "align_self": null,
2094
+ "border": null,
2095
+ "bottom": null,
2096
+ "display": null,
2097
+ "flex": null,
2098
+ "flex_flow": null,
2099
+ "grid_area": null,
2100
+ "grid_auto_columns": null,
2101
+ "grid_auto_flow": null,
2102
+ "grid_auto_rows": null,
2103
+ "grid_column": null,
2104
+ "grid_gap": null,
2105
+ "grid_row": null,
2106
+ "grid_template_areas": null,
2107
+ "grid_template_columns": null,
2108
+ "grid_template_rows": null,
2109
+ "height": null,
2110
+ "justify_content": null,
2111
+ "justify_items": null,
2112
+ "left": null,
2113
+ "margin": null,
2114
+ "max_height": null,
2115
+ "max_width": null,
2116
+ "min_height": null,
2117
+ "min_width": null,
2118
+ "object_fit": null,
2119
+ "object_position": null,
2120
+ "order": null,
2121
+ "overflow": null,
2122
+ "overflow_x": null,
2123
+ "overflow_y": null,
2124
+ "padding": null,
2125
+ "right": null,
2126
+ "top": null,
2127
+ "visibility": null,
2128
+ "width": null
2129
+ }
2130
+ }
2131
+ }
2132
+ }
2133
+ },
2134
+ "nbformat": 4,
2135
+ "nbformat_minor": 4
2136
+ }