uploaded readme
Browse files
README.md
ADDED
@@ -0,0 +1,389 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Quantization made by Richard Erkhov.
|
2 |
+
|
3 |
+
[Github](https://github.com/RichardErkhov)
|
4 |
+
|
5 |
+
[Discord](https://discord.gg/pvy7H8DZMG)
|
6 |
+
|
7 |
+
[Request more models](https://github.com/RichardErkhov/quant_request)
|
8 |
+
|
9 |
+
|
10 |
+
laser-dolphin-mixtral-2x7b-dpo - bnb 8bits
|
11 |
+
- Model creator: https://huggingface.co/macadeliccc/
|
12 |
+
- Original model: https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo/
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
Original model description:
|
18 |
+
---
|
19 |
+
license: apache-2.0
|
20 |
+
library_name: transformers
|
21 |
+
model-index:
|
22 |
+
- name: laser-dolphin-mixtral-2x7b-dpo
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: text-generation
|
26 |
+
name: Text Generation
|
27 |
+
dataset:
|
28 |
+
name: AI2 Reasoning Challenge (25-Shot)
|
29 |
+
type: ai2_arc
|
30 |
+
config: ARC-Challenge
|
31 |
+
split: test
|
32 |
+
args:
|
33 |
+
num_few_shot: 25
|
34 |
+
metrics:
|
35 |
+
- type: acc_norm
|
36 |
+
value: 65.96
|
37 |
+
name: normalized accuracy
|
38 |
+
source:
|
39 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
40 |
+
name: Open LLM Leaderboard
|
41 |
+
- task:
|
42 |
+
type: text-generation
|
43 |
+
name: Text Generation
|
44 |
+
dataset:
|
45 |
+
name: HellaSwag (10-Shot)
|
46 |
+
type: hellaswag
|
47 |
+
split: validation
|
48 |
+
args:
|
49 |
+
num_few_shot: 10
|
50 |
+
metrics:
|
51 |
+
- type: acc_norm
|
52 |
+
value: 85.8
|
53 |
+
name: normalized accuracy
|
54 |
+
source:
|
55 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
56 |
+
name: Open LLM Leaderboard
|
57 |
+
- task:
|
58 |
+
type: text-generation
|
59 |
+
name: Text Generation
|
60 |
+
dataset:
|
61 |
+
name: MMLU (5-Shot)
|
62 |
+
type: cais/mmlu
|
63 |
+
config: all
|
64 |
+
split: test
|
65 |
+
args:
|
66 |
+
num_few_shot: 5
|
67 |
+
metrics:
|
68 |
+
- type: acc
|
69 |
+
value: 63.17
|
70 |
+
name: accuracy
|
71 |
+
source:
|
72 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
73 |
+
name: Open LLM Leaderboard
|
74 |
+
- task:
|
75 |
+
type: text-generation
|
76 |
+
name: Text Generation
|
77 |
+
dataset:
|
78 |
+
name: TruthfulQA (0-shot)
|
79 |
+
type: truthful_qa
|
80 |
+
config: multiple_choice
|
81 |
+
split: validation
|
82 |
+
args:
|
83 |
+
num_few_shot: 0
|
84 |
+
metrics:
|
85 |
+
- type: mc2
|
86 |
+
value: 60.76
|
87 |
+
source:
|
88 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
89 |
+
name: Open LLM Leaderboard
|
90 |
+
- task:
|
91 |
+
type: text-generation
|
92 |
+
name: Text Generation
|
93 |
+
dataset:
|
94 |
+
name: Winogrande (5-shot)
|
95 |
+
type: winogrande
|
96 |
+
config: winogrande_xl
|
97 |
+
split: validation
|
98 |
+
args:
|
99 |
+
num_few_shot: 5
|
100 |
+
metrics:
|
101 |
+
- type: acc
|
102 |
+
value: 79.01
|
103 |
+
name: accuracy
|
104 |
+
source:
|
105 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
106 |
+
name: Open LLM Leaderboard
|
107 |
+
- task:
|
108 |
+
type: text-generation
|
109 |
+
name: Text Generation
|
110 |
+
dataset:
|
111 |
+
name: GSM8k (5-shot)
|
112 |
+
type: gsm8k
|
113 |
+
config: main
|
114 |
+
split: test
|
115 |
+
args:
|
116 |
+
num_few_shot: 5
|
117 |
+
metrics:
|
118 |
+
- type: acc
|
119 |
+
value: 48.29
|
120 |
+
name: accuracy
|
121 |
+
source:
|
122 |
+
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
123 |
+
name: Open LLM Leaderboard
|
124 |
+
---
|
125 |
+
# Laser-Dolphin-Mixtral-2x7b-dpo
|
126 |
+
|
127 |
+
![laser_dolphin_image](./dolphin_moe.png)
|
128 |
+
|
129 |
+
**New Version out now!**
|
130 |
+
|
131 |
+
Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT)
|
132 |
+
|
133 |
+
## Overview
|
134 |
+
|
135 |
+
This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
|
136 |
+
|
137 |
+
+ The new version shows ~1 point increase in evaluation performance on average.
|
138 |
+
|
139 |
+
## Process
|
140 |
+
|
141 |
+
+ The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb)
|
142 |
+
|
143 |
+
+ The mergekit_config is in the files.
|
144 |
+
|
145 |
+
+ The models used in the configuration are not lasered, but the final product is. This is an update from the last version.
|
146 |
+
|
147 |
+
+ This process is experimental. Your mileage may vary.
|
148 |
+
|
149 |
+
## Future Goals
|
150 |
+
|
151 |
+
+ [ ] Function Calling
|
152 |
+
+ [ ] v2 with new base model to improve performance
|
153 |
+
|
154 |
+
## Quantizations
|
155 |
+
|
156 |
+
### ExLlamav2
|
157 |
+
|
158 |
+
_These are the recommended quantizations for users that are running the model on GPU_
|
159 |
+
|
160 |
+
Thanks to user [bartowski](https://huggingface.co/bartowski) we now have exllamav2 quantizations in 3.5 through 8 bpw. They are available here:
|
161 |
+
|
162 |
+
+ [bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2)
|
163 |
+
|
164 |
+
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
|
165 |
+
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
|
166 |
+
| [8_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/8_0) | 8.0 | 8.0 | 13.7 GB | 15.1 GB | 17.2 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
|
167 |
+
| [6_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/6_5) | 6.5 | 8.0 | 11.5 GB | 12.9 GB | 15.0 GB | Near unquantized performance at vastly reduced size, **recommended**. |
|
168 |
+
| [5_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/5_0) | 5.0 | 6.0 | 9.3 GB | 10.7 GB | 12.8 GB | Slightly lower quality vs 6.5, great for 12gb cards with 16k context. |
|
169 |
+
| [4_25](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/4_25) | 4.25 | 6.0 | 8.2 GB | 9.6 GB | 11.7 GB | GPTQ equivalent bits per weight. |
|
170 |
+
| [3_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/3_5) | 3.5 | 6.0 | 7.0 GB | 8.4 GB | 10.5 GB | Lower quality, not recommended. |
|
171 |
+
|
172 |
+
His quantizations represent the first ~13B model with GQA support. Check out his repo for more information!
|
173 |
+
|
174 |
+
### GGUF
|
175 |
+
|
176 |
+
*Current GGUF [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF)*
|
177 |
+
|
178 |
+
### AWQ
|
179 |
+
|
180 |
+
*Current AWQ [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-AWQ)
|
181 |
+
|
182 |
+
### TheBloke
|
183 |
+
|
184 |
+
**These Quants will result in unpredicted behavior. New quants are available as I have updated the model**
|
185 |
+
|
186 |
+
Quatizations provided by [TheBloke](https://huggingface.co/TheBloke/laser-dolphin-mixtral-2x7b-dpo-GGUF)
|
187 |
+
|
188 |
+
## HF Spaces
|
189 |
+
+ GGUF chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat-GGUF)
|
190 |
+
+ 4-bit bnb chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat)
|
191 |
+
|
192 |
+
# Ollama
|
193 |
+
|
194 |
+
```bash
|
195 |
+
ollama run macadeliccc/laser-dolphin-mixtral-2x7b-dpo
|
196 |
+
```
|
197 |
+
|
198 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/oVwa7Dwkt00tk8_MtlJdR.png)
|
199 |
+
|
200 |
+
## Code Example
|
201 |
+
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
|
202 |
+
|
203 |
+
```python
|
204 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
205 |
+
|
206 |
+
def generate_response(prompt):
|
207 |
+
"""
|
208 |
+
Generate a response from the model based on the input prompt.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
prompt (str): Prompt for the model.
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
str: The generated response from the model.
|
215 |
+
"""
|
216 |
+
# Tokenize the input prompt
|
217 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
218 |
+
|
219 |
+
# Generate output tokens
|
220 |
+
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
|
221 |
+
|
222 |
+
# Decode the generated tokens to a string
|
223 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
224 |
+
|
225 |
+
return response
|
226 |
+
|
227 |
+
# Load the model and tokenizer
|
228 |
+
model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo"
|
229 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
230 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
|
231 |
+
|
232 |
+
prompt = "Write a quicksort algorithm in python"
|
233 |
+
|
234 |
+
# Generate and print responses for each language
|
235 |
+
print("Response:")
|
236 |
+
print(generate_response(prompt), "\n")
|
237 |
+
```
|
238 |
+
|
239 |
+
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
|
240 |
+
|
241 |
+
## Eval
|
242 |
+
|
243 |
+
## EQ Bench
|
244 |
+
|
245 |
+
<pre>----Benchmark Complete----
|
246 |
+
2024-01-31 16:55:37
|
247 |
+
Time taken: 31.1 mins
|
248 |
+
Prompt Format: ChatML
|
249 |
+
Model: macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF
|
250 |
+
Score (v2): 72.76
|
251 |
+
Parseable: 171.0
|
252 |
+
---------------
|
253 |
+
Batch completed
|
254 |
+
Time taken: 31.2 mins
|
255 |
+
---------------
|
256 |
+
</pre>
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
|
261 |
+
## Summary of previous evaluation
|
262 |
+
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|
263 |
+
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|
264 |
+
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 41.31| 73.67| 61.69| 42.79| 54.87|
|
265 |
+
|
266 |
+
## Detailed current evaluation
|
267 |
+
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|
268 |
+
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|
269 |
+
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 42.25| 73.45| 63.44| 43.96| 55.77|
|
270 |
+
|
271 |
+
### AGIEval
|
272 |
+
| Task |Version| Metric |Value| |Stderr|
|
273 |
+
|------------------------------|------:|--------|----:|---|-----:|
|
274 |
+
|agieval_aqua_rat | 0|acc |21.26|± | 2.57|
|
275 |
+
| | |acc_norm|21.65|± | 2.59|
|
276 |
+
|agieval_logiqa_en | 0|acc |34.72|± | 1.87|
|
277 |
+
| | |acc_norm|35.64|± | 1.88|
|
278 |
+
|agieval_lsat_ar | 0|acc |26.96|± | 2.93|
|
279 |
+
| | |acc_norm|26.96|± | 2.93|
|
280 |
+
|agieval_lsat_lr | 0|acc |45.88|± | 2.21|
|
281 |
+
| | |acc_norm|46.08|± | 2.21|
|
282 |
+
|agieval_lsat_rc | 0|acc |59.48|± | 3.00|
|
283 |
+
| | |acc_norm|59.48|± | 3.00|
|
284 |
+
|agieval_sat_en | 0|acc |73.79|± | 3.07|
|
285 |
+
| | |acc_norm|73.79|± | 3.07|
|
286 |
+
|agieval_sat_en_without_passage| 0|acc |42.23|± | 3.45|
|
287 |
+
| | |acc_norm|41.26|± | 3.44|
|
288 |
+
|agieval_sat_math | 0|acc |37.27|± | 3.27|
|
289 |
+
| | |acc_norm|33.18|± | 3.18|
|
290 |
+
|
291 |
+
Average: 42.25%
|
292 |
+
|
293 |
+
### GPT4All
|
294 |
+
| Task |Version| Metric |Value| |Stderr|
|
295 |
+
|-------------|------:|--------|----:|---|-----:|
|
296 |
+
|arc_challenge| 0|acc |58.36|± | 1.44|
|
297 |
+
| | |acc_norm|58.02|± | 1.44|
|
298 |
+
|arc_easy | 0|acc |82.20|± | 0.78|
|
299 |
+
| | |acc_norm|77.40|± | 0.86|
|
300 |
+
|boolq | 1|acc |87.52|± | 0.58|
|
301 |
+
|hellaswag | 0|acc |67.50|± | 0.47|
|
302 |
+
| | |acc_norm|84.43|± | 0.36|
|
303 |
+
|openbookqa | 0|acc |34.40|± | 2.13|
|
304 |
+
| | |acc_norm|47.00|± | 2.23|
|
305 |
+
|piqa | 0|acc |81.61|± | 0.90|
|
306 |
+
| | |acc_norm|82.59|± | 0.88|
|
307 |
+
|winogrande | 0|acc |77.19|± | 1.18|
|
308 |
+
|
309 |
+
|
310 |
+
Average: 73.45%
|
311 |
+
|
312 |
+
### GSM8K
|
313 |
+
|Task |Version| Metric |Value| |Stderr|
|
314 |
+
|-----|------:|-----------------------------|-----|---|------|
|
315 |
+
|gsm8k| 2|exact_match,get-answer | 0.75| | |
|
316 |
+
| | |exact_match_stderr,get-answer| 0.01| | |
|
317 |
+
| | |alias |gsm8k| | |
|
318 |
+
|
319 |
+
### TruthfulQA
|
320 |
+
| Task |Version|Metric|Value| |Stderr|
|
321 |
+
|-------------|------:|------|----:|---|-----:|
|
322 |
+
|truthfulqa_mc| 1|mc1 |45.90|± | 1.74|
|
323 |
+
| | |mc2 |63.44|± | 1.56|
|
324 |
+
|
325 |
+
Average: 63.44%
|
326 |
+
|
327 |
+
### Bigbench
|
328 |
+
| Task |Version| Metric |Value| |Stderr|
|
329 |
+
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|
330 |
+
|bigbench_causal_judgement | 0|multiple_choice_grade|58.42|± | 3.59|
|
331 |
+
|bigbench_date_understanding | 0|multiple_choice_grade|60.70|± | 2.55|
|
332 |
+
|bigbench_disambiguation_qa | 0|multiple_choice_grade|38.37|± | 3.03|
|
333 |
+
|bigbench_geometric_shapes | 0|multiple_choice_grade|21.73|± | 2.18|
|
334 |
+
| | |exact_str_match | 0.00|± | 0.00|
|
335 |
+
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|35.00|± | 2.14|
|
336 |
+
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.57|± | 1.61|
|
337 |
+
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|50.33|± | 2.89|
|
338 |
+
|bigbench_movie_recommendation | 0|multiple_choice_grade|45.00|± | 2.23|
|
339 |
+
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58|
|
340 |
+
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|60.35|± | 1.09|
|
341 |
+
|bigbench_ruin_names | 0|multiple_choice_grade|51.12|± | 2.36|
|
342 |
+
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|32.26|± | 1.48|
|
343 |
+
|bigbench_snarks | 0|multiple_choice_grade|67.96|± | 3.48|
|
344 |
+
|bigbench_sports_understanding | 0|multiple_choice_grade|70.59|± | 1.45|
|
345 |
+
|bigbench_temporal_sequences | 0|multiple_choice_grade|35.80|± | 1.52|
|
346 |
+
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18|
|
347 |
+
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.20|± | 0.90|
|
348 |
+
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|50.33|± | 2.89|
|
349 |
+
|
350 |
+
Average: 43.96%
|
351 |
+
|
352 |
+
Average score: 55.77%
|
353 |
+
|
354 |
+
Elapsed time: 02:43:45
|
355 |
+
## Citations
|
356 |
+
|
357 |
+
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
|
358 |
+
|
359 |
+
```bibtex
|
360 |
+
@article{sharma2023truth,
|
361 |
+
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
|
362 |
+
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
|
363 |
+
journal={arXiv preprint arXiv:2312.13558},
|
364 |
+
year={2023} }
|
365 |
+
```
|
366 |
+
|
367 |
+
```bibtex
|
368 |
+
@article{gao2021framework,
|
369 |
+
title={A framework for few-shot language model evaluation},
|
370 |
+
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
|
371 |
+
journal={Version v0. 0.1. Sept},
|
372 |
+
year={2021}
|
373 |
+
}
|
374 |
+
```
|
375 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
|
376 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__laser-dolphin-mixtral-2x7b-dpo)
|
377 |
+
|
378 |
+
| Metric |Value|
|
379 |
+
|---------------------------------|----:|
|
380 |
+
|Avg. |67.16|
|
381 |
+
|AI2 Reasoning Challenge (25-Shot)|65.96|
|
382 |
+
|HellaSwag (10-Shot) |85.80|
|
383 |
+
|MMLU (5-Shot) |63.17|
|
384 |
+
|TruthfulQA (0-shot) |60.76|
|
385 |
+
|Winogrande (5-shot) |79.01|
|
386 |
+
|GSM8k (5-shot) |48.29|
|
387 |
+
|
388 |
+
|
389 |
+
|