Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) laser-dolphin-mixtral-2x7b-dpo - GGUF - Model creator: https://huggingface.co/macadeliccc/ - Original model: https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo/ | Name | Quant method | Size | | ---- | ---- | ---- | | [laser-dolphin-mixtral-2x7b-dpo.Q2_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q2_K.gguf) | Q2_K | 4.43GB | | [laser-dolphin-mixtral-2x7b-dpo.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.IQ3_XS.gguf) | IQ3_XS | 4.94GB | | [laser-dolphin-mixtral-2x7b-dpo.IQ3_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.IQ3_S.gguf) | IQ3_S | 5.22GB | | [laser-dolphin-mixtral-2x7b-dpo.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q3_K_S.gguf) | Q3_K_S | 5.2GB | | [laser-dolphin-mixtral-2x7b-dpo.IQ3_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.IQ3_M.gguf) | IQ3_M | 5.34GB | | [laser-dolphin-mixtral-2x7b-dpo.Q3_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q3_K.gguf) | Q3_K | 5.78GB | | [laser-dolphin-mixtral-2x7b-dpo.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q3_K_M.gguf) | Q3_K_M | 5.78GB | | [laser-dolphin-mixtral-2x7b-dpo.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q3_K_L.gguf) | Q3_K_L | 6.27GB | | [laser-dolphin-mixtral-2x7b-dpo.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.IQ4_XS.gguf) | IQ4_XS | 6.5GB | | [laser-dolphin-mixtral-2x7b-dpo.Q4_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q4_0.gguf) | Q4_0 | 6.78GB | | [laser-dolphin-mixtral-2x7b-dpo.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.IQ4_NL.gguf) | IQ4_NL | 6.85GB | | [laser-dolphin-mixtral-2x7b-dpo.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q4_K_S.gguf) | Q4_K_S | 6.84GB | | [laser-dolphin-mixtral-2x7b-dpo.Q4_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q4_K.gguf) | Q4_K | 7.25GB | | [laser-dolphin-mixtral-2x7b-dpo.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q4_K_M.gguf) | Q4_K_M | 7.25GB | | [laser-dolphin-mixtral-2x7b-dpo.Q4_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q4_1.gguf) | Q4_1 | 7.52GB | | [laser-dolphin-mixtral-2x7b-dpo.Q5_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q5_0.gguf) | Q5_0 | 8.26GB | | [laser-dolphin-mixtral-2x7b-dpo.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q5_K_S.gguf) | Q5_K_S | 8.26GB | | [laser-dolphin-mixtral-2x7b-dpo.Q5_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q5_K.gguf) | Q5_K | 8.51GB | | [laser-dolphin-mixtral-2x7b-dpo.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q5_K_M.gguf) | Q5_K_M | 8.51GB | | [laser-dolphin-mixtral-2x7b-dpo.Q5_1.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q5_1.gguf) | Q5_1 | 9.01GB | | [laser-dolphin-mixtral-2x7b-dpo.Q6_K.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q6_K.gguf) | Q6_K | 9.84GB | | [laser-dolphin-mixtral-2x7b-dpo.Q8_0.gguf](https://huggingface.co/RichardErkhov/macadeliccc_-_laser-dolphin-mixtral-2x7b-dpo-gguf/blob/main/laser-dolphin-mixtral-2x7b-dpo.Q8_0.gguf) | Q8_0 | 12.75GB | Original model description: --- license: apache-2.0 library_name: transformers model-index: - name: laser-dolphin-mixtral-2x7b-dpo results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 65.96 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.8 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.17 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 60.76 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 79.01 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 48.29 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo name: Open LLM Leaderboard --- # Laser-Dolphin-Mixtral-2x7b-dpo ![laser_dolphin_image](./dolphin_moe.png) **New Version out now!** Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT) ## Overview This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) + The new version shows ~1 point increase in evaluation performance on average. ## Process + The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb) + The mergekit_config is in the files. + The models used in the configuration are not lasered, but the final product is. This is an update from the last version. + This process is experimental. Your mileage may vary. ## Future Goals + [ ] Function Calling + [ ] v2 with new base model to improve performance ## Quantizations ### ExLlamav2 _These are the recommended quantizations for users that are running the model on GPU_ Thanks to user [bartowski](https://huggingface.co/bartowski) we now have exllamav2 quantizations in 3.5 through 8 bpw. They are available here: + [bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2) | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/8_0) | 8.0 | 8.0 | 13.7 GB | 15.1 GB | 17.2 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/6_5) | 6.5 | 8.0 | 11.5 GB | 12.9 GB | 15.0 GB | Near unquantized performance at vastly reduced size, **recommended**. | | [5_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/5_0) | 5.0 | 6.0 | 9.3 GB | 10.7 GB | 12.8 GB | Slightly lower quality vs 6.5, great for 12gb cards with 16k context. | | [4_25](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/4_25) | 4.25 | 6.0 | 8.2 GB | 9.6 GB | 11.7 GB | GPTQ equivalent bits per weight. | | [3_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/3_5) | 3.5 | 6.0 | 7.0 GB | 8.4 GB | 10.5 GB | Lower quality, not recommended. | His quantizations represent the first ~13B model with GQA support. Check out his repo for more information! ### GGUF *Current GGUF [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF)* ### AWQ *Current AWQ [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-AWQ) ### TheBloke **These Quants will result in unpredicted behavior. New quants are available as I have updated the model** Quatizations provided by [TheBloke](https://huggingface.co/TheBloke/laser-dolphin-mixtral-2x7b-dpo-GGUF) ## HF Spaces + GGUF chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat-GGUF) + 4-bit bnb chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat) # Ollama ```bash ollama run macadeliccc/laser-dolphin-mixtral-2x7b-dpo ``` ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/oVwa7Dwkt00tk8_MtlJdR.png) ## Code Example Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly ```python from transformers import AutoModelForCausalLM, AutoTokenizer def generate_response(prompt): """ Generate a response from the model based on the input prompt. Args: prompt (str): Prompt for the model. Returns: str: The generated response from the model. """ # Tokenize the input prompt inputs = tokenizer(prompt, return_tensors="pt") # Generate output tokens outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id) # Decode the generated tokens to a string response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response # Load the model and tokenizer model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True) prompt = "Write a quicksort algorithm in python" # Generate and print responses for each language print("Response:") print(generate_response(prompt), "\n") ``` [colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example ## Eval ## EQ Bench
----Benchmark Complete----
2024-01-31 16:55:37
Time taken: 31.1 mins
Prompt Format: ChatML
Model: macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF
Score (v2): 72.76
Parseable: 171.0
---------------
Batch completed
Time taken: 31.2 mins
---------------
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing) ## Summary of previous evaluation | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 41.31| 73.67| 61.69| 42.79| 54.87| ## Detailed current evaluation | Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 42.25| 73.45| 63.44| 43.96| 55.77| ### AGIEval | Task |Version| Metric |Value| |Stderr| |------------------------------|------:|--------|----:|---|-----:| |agieval_aqua_rat | 0|acc |21.26|± | 2.57| | | |acc_norm|21.65|± | 2.59| |agieval_logiqa_en | 0|acc |34.72|± | 1.87| | | |acc_norm|35.64|± | 1.88| |agieval_lsat_ar | 0|acc |26.96|± | 2.93| | | |acc_norm|26.96|± | 2.93| |agieval_lsat_lr | 0|acc |45.88|± | 2.21| | | |acc_norm|46.08|± | 2.21| |agieval_lsat_rc | 0|acc |59.48|± | 3.00| | | |acc_norm|59.48|± | 3.00| |agieval_sat_en | 0|acc |73.79|± | 3.07| | | |acc_norm|73.79|± | 3.07| |agieval_sat_en_without_passage| 0|acc |42.23|± | 3.45| | | |acc_norm|41.26|± | 3.44| |agieval_sat_math | 0|acc |37.27|± | 3.27| | | |acc_norm|33.18|± | 3.18| Average: 42.25% ### GPT4All | Task |Version| Metric |Value| |Stderr| |-------------|------:|--------|----:|---|-----:| |arc_challenge| 0|acc |58.36|± | 1.44| | | |acc_norm|58.02|± | 1.44| |arc_easy | 0|acc |82.20|± | 0.78| | | |acc_norm|77.40|± | 0.86| |boolq | 1|acc |87.52|± | 0.58| |hellaswag | 0|acc |67.50|± | 0.47| | | |acc_norm|84.43|± | 0.36| |openbookqa | 0|acc |34.40|± | 2.13| | | |acc_norm|47.00|± | 2.23| |piqa | 0|acc |81.61|± | 0.90| | | |acc_norm|82.59|± | 0.88| |winogrande | 0|acc |77.19|± | 1.18| Average: 73.45% ### GSM8K |Task |Version| Metric |Value| |Stderr| |-----|------:|-----------------------------|-----|---|------| |gsm8k| 2|exact_match,get-answer | 0.75| | | | | |exact_match_stderr,get-answer| 0.01| | | | | |alias |gsm8k| | | ### TruthfulQA | Task |Version|Metric|Value| |Stderr| |-------------|------:|------|----:|---|-----:| |truthfulqa_mc| 1|mc1 |45.90|± | 1.74| | | |mc2 |63.44|± | 1.56| Average: 63.44% ### Bigbench | Task |Version| Metric |Value| |Stderr| |------------------------------------------------|------:|---------------------|----:|---|-----:| |bigbench_causal_judgement | 0|multiple_choice_grade|58.42|± | 3.59| |bigbench_date_understanding | 0|multiple_choice_grade|60.70|± | 2.55| |bigbench_disambiguation_qa | 0|multiple_choice_grade|38.37|± | 3.03| |bigbench_geometric_shapes | 0|multiple_choice_grade|21.73|± | 2.18| | | |exact_str_match | 0.00|± | 0.00| |bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|35.00|± | 2.14| |bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.57|± | 1.61| |bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|50.33|± | 2.89| |bigbench_movie_recommendation | 0|multiple_choice_grade|45.00|± | 2.23| |bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58| |bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|60.35|± | 1.09| |bigbench_ruin_names | 0|multiple_choice_grade|51.12|± | 2.36| |bigbench_salient_translation_error_detection | 0|multiple_choice_grade|32.26|± | 1.48| |bigbench_snarks | 0|multiple_choice_grade|67.96|± | 3.48| |bigbench_sports_understanding | 0|multiple_choice_grade|70.59|± | 1.45| |bigbench_temporal_sequences | 0|multiple_choice_grade|35.80|± | 1.52| |bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18| |bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.20|± | 0.90| |bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|50.33|± | 2.89| Average: 43.96% Average score: 55.77% Elapsed time: 02:43:45 ## Citations Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024. ```bibtex @article{sharma2023truth, title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction}, author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra}, journal={arXiv preprint arXiv:2312.13558}, year={2023} } ``` ```bibtex @article{gao2021framework, title={A framework for few-shot language model evaluation}, author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others}, journal={Version v0. 0.1. Sept}, year={2021} } ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__laser-dolphin-mixtral-2x7b-dpo) | Metric |Value| |---------------------------------|----:| |Avg. |67.16| |AI2 Reasoning Challenge (25-Shot)|65.96| |HellaSwag (10-Shot) |85.80| |MMLU (5-Shot) |63.17| |TruthfulQA (0-shot) |60.76| |Winogrande (5-shot) |79.01| |GSM8k (5-shot) |48.29|