File size: 8,212 Bytes
bbb1b2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
Quantization made by Richard Erkhov.
[Github](https://github.com/RichardErkhov)
[Discord](https://discord.gg/pvy7H8DZMG)
[Request more models](https://github.com/RichardErkhov/quant_request)
Taiwan-LLM-7B-v2.0-base - GGUF
- Model creator: https://huggingface.co/yentinglin/
- Original model: https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.0-base/
| Name | Quant method | Size |
| ---- | ---- | ---- |
| [Taiwan-LLM-7B-v2.0-base.Q2_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q2_K.gguf) | Q2_K | 2.36GB |
| [Taiwan-LLM-7B-v2.0-base.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ3_XS.gguf) | IQ3_XS | 2.6GB |
| [Taiwan-LLM-7B-v2.0-base.IQ3_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ3_S.gguf) | IQ3_S | 2.75GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K_S.gguf) | Q3_K_S | 2.75GB |
| [Taiwan-LLM-7B-v2.0-base.IQ3_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ3_M.gguf) | IQ3_M | 2.9GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K.gguf) | Q3_K | 3.07GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K_M.gguf) | Q3_K_M | 3.07GB |
| [Taiwan-LLM-7B-v2.0-base.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q3_K_L.gguf) | Q3_K_L | 3.35GB |
| [Taiwan-LLM-7B-v2.0-base.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ4_XS.gguf) | IQ4_XS | 3.4GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_0.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_0.gguf) | Q4_0 | 3.56GB |
| [Taiwan-LLM-7B-v2.0-base.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.IQ4_NL.gguf) | IQ4_NL | 3.58GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_K_S.gguf) | Q4_K_S | 3.59GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_K.gguf) | Q4_K | 3.8GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_K_M.gguf) | Q4_K_M | 3.8GB |
| [Taiwan-LLM-7B-v2.0-base.Q4_1.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q4_1.gguf) | Q4_1 | 3.95GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_0.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_0.gguf) | Q5_0 | 4.33GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_K_S.gguf) | Q5_K_S | 4.33GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_K.gguf) | Q5_K | 4.45GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_K_M.gguf) | Q5_K_M | 4.45GB |
| [Taiwan-LLM-7B-v2.0-base.Q5_1.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q5_1.gguf) | Q5_1 | 4.72GB |
| [Taiwan-LLM-7B-v2.0-base.Q6_K.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q6_K.gguf) | Q6_K | 5.15GB |
| [Taiwan-LLM-7B-v2.0-base.Q8_0.gguf](https://huggingface.co/RichardErkhov/yentinglin_-_Taiwan-LLM-7B-v2.0-base-gguf/blob/main/Taiwan-LLM-7B-v2.0-base.Q8_0.gguf) | Q8_0 | 6.67GB |
Original model description:
---
license: apache-2.0
language:
- zh
widget:
- text: "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT:"
library_name: transformers
pipeline_tag: text-generation
extra_gated_heading: Acknowledge license to accept the repository.
extra_gated_prompt: Please contact the author for access.
extra_gated_button_content: Acknowledge license 同意以上內容
extra_gated_fields:
Name: text
Mail: text
Organization: text
Country: text
Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox
使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox
---
<img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
# 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
# Model Card for Taiwan LLM 7B v2.0 base
Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
## Model description
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
- **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
- **Finetuned from model:** [meta-llama/Llama-2-7b-hf](https://huggingface.co/yentinglin/meta-llama/Llama-2-7b-hf)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
- **Demo:** https://twllm.com/
## Performance
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)
## Intended uses
You should fine-tuned this model for instruction-following / chat application.
### Training hyperparameters
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)
The following hyperparameters were used during training:
- learning_rate: 5e-05
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 5.0
## Citation
If you find Taiwan LLM is useful in your work, please cite it with:
```
@misc{lin2023taiwan,
title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model},
author={Yen-Ting Lin and Yun-Nung Chen},
year={2023},
eprint={2311.17487},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
# Acknowledgement
Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.
|