--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-bib-lang-grammar results: [] datasets: - RickBrannan/categorize_bib_lang_grammar language: - en --- # distilbert-base-uncased-finetuned-bib-lang-grammar This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the dataset [RickBrannan/categorize_bib_lang_grammar](https://huggingface.co/datasets/RickBrannan/categorize_bib_lang_grammar). ## Intended uses & limitations This model is intended to be used to locate discussions that utilize grammatical terminology within resources like biblical commentaries or study notes. ## Training and evaluation data This model is trained on [RickBrannan/categorize_bib_lang_grammar](https://huggingface.co/datasets/RickBrannan/categorize_bib_lang_grammar), which is a collection of 2,700+ sentences categorized as `NOT-GRAMMAR` or `GRAMMAR`. For details on the dataset and its sources, see the [Dataset Card](https://huggingface.co/datasets/RickBrannan/categorize_bib_lang_grammar). ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Framework versions - Transformers 4.46.3 - Pytorch 2.5.1+cpu - Datasets 3.1.0 - Tokenizers 0.20.3