Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +986 -0
- config.json +32 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: BAAI/bge-base-en-v1.5
|
3 |
+
datasets: []
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
library_name: sentence-transformers
|
7 |
+
license: apache-2.0
|
8 |
+
metrics:
|
9 |
+
- cosine_accuracy@1
|
10 |
+
- cosine_accuracy@3
|
11 |
+
- cosine_accuracy@5
|
12 |
+
- cosine_accuracy@10
|
13 |
+
- cosine_precision@1
|
14 |
+
- cosine_precision@3
|
15 |
+
- cosine_precision@5
|
16 |
+
- cosine_precision@10
|
17 |
+
- cosine_recall@1
|
18 |
+
- cosine_recall@3
|
19 |
+
- cosine_recall@5
|
20 |
+
- cosine_recall@10
|
21 |
+
- cosine_ndcg@10
|
22 |
+
- cosine_mrr@10
|
23 |
+
- cosine_map@100
|
24 |
+
pipeline_tag: sentence-similarity
|
25 |
+
tags:
|
26 |
+
- sentence-transformers
|
27 |
+
- sentence-similarity
|
28 |
+
- feature-extraction
|
29 |
+
- generated_from_trainer
|
30 |
+
- dataset_size:3305
|
31 |
+
- loss:MatryoshkaLoss
|
32 |
+
- loss:MultipleNegativesRankingLoss
|
33 |
+
widget:
|
34 |
+
- source_sentence: '
|
35 |
+
|
36 |
+
Limitation of Liability
|
37 |
+
|
38 |
+
|
39 |
+
CUSTOMER’S ENTIRE LIABILITY AND PACNET’S EXCLUSIVE REMEDIES AGAINST CUSTOMER FOR
|
40 |
+
ANY DAMAGES ARISING
|
41 |
+
|
42 |
+
FROM ANY ACT OR OMISSION RELATING TO THE SERVICES, REGARDLESS OF THE FORM OF ACTION,
|
43 |
+
WHETHER IN CONTRACT,
|
44 |
+
|
45 |
+
UNDER STATUTE, IN TORT OR OTHERWISE, INCLUDING NEGLIGENCE, WILL BE LIMITED, FOR
|
46 |
+
EACH EVENT OR SERIES OF
|
47 |
+
|
48 |
+
CONNECTED EVENTS, AS FOLLOWS:
|
49 |
+
|
50 |
+
|
51 |
+
FOR PERSONAL INJURY OR DEATH, UNLIMITED, BUT SUBJECT TO PROVEN DIRECT DAMAGES;
|
52 |
+
AND
|
53 |
+
|
54 |
+
FOR ALL OTHER EVENTS, SUBJECT TO A MAXIMUM EQUAL TO THE AGGREGATE MONTHLY SERVICE
|
55 |
+
CHARGES PAID OR
|
56 |
+
|
57 |
+
PAYBALE BY THE CUSTOMER UNDER THE AGREEMENT.
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
PACNET’S ENTIRE LIABILITY AND CUSTOMER’S EXCLUSIVE REMEDIES AGAINST PACNET OR
|
62 |
+
ITS AFFILIATES FOR
|
63 |
+
|
64 |
+
ANY DAMAGES ARISING FROM ANY ACT OR OMISSION RELATING TO THE AGREEMENT, REGARDLESS
|
65 |
+
OF THE
|
66 |
+
|
67 |
+
FORM OF ACTION, WHETHER IN CONTRACT, UNDER STATUTE, IN TORT OR OTHERWISE, INCLUDING
|
68 |
+
|
69 |
+
NEGLIGENCE, WILL BE LIMITED, FOR EACH EVENT OR SERIES OF CONNECTED EVENTS, AS
|
70 |
+
FOLLOWS:
|
71 |
+
|
72 |
+
|
73 |
+
{i} | FOR PERSONAL INJURY OR DEATH, UNLIMITED, BUT SUBJECT TO PROVEN DIRECT DAMAGES;
|
74 |
+
|
75 |
+
|
76 |
+
(ii) FOR FAILURE TO COMPLY WITH SERVICE LEVELS, TO THE AMOUNT OF CREDITS SET OUT
|
77 |
+
IN THE
|
78 |
+
|
79 |
+
RELEVANT SPECIFIC CONDITIONS OF THE RELEVANT SERVICE; AND
|
80 |
+
|
81 |
+
|
82 |
+
(iii) FOR ALL OTHER EVENTS, SUBJECT TO A MAXIMUM EQUAL TO THE AGGREGATE MONTHLY
|
83 |
+
SERVICE
|
84 |
+
|
85 |
+
CHARGES PAID OR PAYABLE BY THE CUSTOMER UNDER THE AGREEMENT.
|
86 |
+
|
87 |
+
.
|
88 |
+
|
89 |
+
|
90 |
+
PACNET WILL IN NO CIRCUMSTANCES BE LIABLE FOR ANY DAMAGES (EXCEPT RESULTING IN
|
91 |
+
PERSONAL INJURY
|
92 |
+
|
93 |
+
OR DEATH) ATTRIBUTABLE TO ANY SERVICE, PRODUCT OR ACTIONS OF ANY PERSON OTHER
|
94 |
+
THAN PACNET, ITS
|
95 |
+
|
96 |
+
EMPLOYEES AND AGENTS.
|
97 |
+
|
98 |
+
'
|
99 |
+
sentences:
|
100 |
+
- Auto Renewal Cancellation Notice Period
|
101 |
+
- Assignment
|
102 |
+
- Absolute Maximum Amount of Liability
|
103 |
+
- source_sentence: '
|
104 |
+
|
105 |
+
Subcontracting
|
106 |
+
|
107 |
+
|
108 |
+
(a) The Supplier must not subcontract any of its
|
109 |
+
|
110 |
+
obligations under this Agreement, without the
|
111 |
+
|
112 |
+
Company''s prior written consent (which will not
|
113 |
+
|
114 |
+
be unreasonably withheld).
|
115 |
+
|
116 |
+
|
117 |
+
(b) The Supplier remains fully responsible for acts
|
118 |
+
|
119 |
+
and omissions of its subcontractors and Supplier
|
120 |
+
|
121 |
+
Personnel in connection with this Agreement or a
|
122 |
+
|
123 |
+
Statement of Work as if they were its acts and
|
124 |
+
|
125 |
+
omissions.
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
Personnel
|
130 |
+
|
131 |
+
|
132 |
+
(a) At the Company''s reasonable request the
|
133 |
+
|
134 |
+
Supplier must, at its cost, immediately (or by any
|
135 |
+
|
136 |
+
date nominated by the Company) remove any
|
137 |
+
|
138 |
+
person nominated by the Company from the
|
139 |
+
|
140 |
+
performance of the Services and, if requested by
|
141 |
+
|
142 |
+
the Company, provide an alternative person
|
143 |
+
|
144 |
+
acceptable to the Company (acting reasonably).
|
145 |
+
|
146 |
+
|
147 |
+
(b) The Supplier will not remove (temporarily or
|
148 |
+
|
149 |
+
permanently) or replace a Key Personnel without
|
150 |
+
|
151 |
+
the Company’s prior written consent (which must
|
152 |
+
|
153 |
+
not be unreasonably withheld). Any substitute
|
154 |
+
|
155 |
+
personnel must be at least equally qualified for
|
156 |
+
|
157 |
+
the duties of the position as the person for whom
|
158 |
+
|
159 |
+
they are substituted. The Supplier must use
|
160 |
+
|
161 |
+
reasonable endeavours to provide uninterrupted
|
162 |
+
|
163 |
+
transition between Key Personnel and their
|
164 |
+
|
165 |
+
replacements.
|
166 |
+
|
167 |
+
'
|
168 |
+
sentences:
|
169 |
+
- Audit Rights
|
170 |
+
- Severability
|
171 |
+
- Subcontracting
|
172 |
+
- source_sentence: All Intellectual Property shall be deemed to be owned by the Employer
|
173 |
+
and Executive hereby relinquishes any right or claim to any such Intellectual
|
174 |
+
Property except to the extent necessary to transfer the ownership of any such
|
175 |
+
Intellectual Property to Employer. Executive shall promptly disclose to the Employer
|
176 |
+
all Intellectual Property. Without royalty or separate consideration, Executive
|
177 |
+
hereby assigns and agrees to assign to the Employer (or as otherwise directed
|
178 |
+
by the Employer) Executive’s full right, title and interest in and to all Intellectual
|
179 |
+
Property, including without limitation all copyright interests therein. Executive
|
180 |
+
agrees to cooperate with Employer and to execute any and all applications for
|
181 |
+
domestic and foreign patents, copyrights or other proprietary rights and to do
|
182 |
+
such other acts (including, among other things, the execution and delivery of
|
183 |
+
instruments of further assurance or confirmation) requested by the Employer to
|
184 |
+
assign the Intellectual Property to the Employer and to permit the Employer to
|
185 |
+
file, obtain and enforce any patents, copyrights or other proprietary rights in
|
186 |
+
the Intellectual Property. Executive agrees that Executive’s obligation to cooperate
|
187 |
+
and to execute, or cause to be executed, when it is in Executive’s power to do
|
188 |
+
so, any such instrument or paper, will continue after termination of this Agreement.
|
189 |
+
Executive agrees to make and maintain adequate and current written records of
|
190 |
+
all Intellectual Property, in the form of notes, sketches, drawings, or reports
|
191 |
+
relating hereto, which records shall be and remain the property of and available
|
192 |
+
to the Employer at all times. The parties agree that the Intellectual Property
|
193 |
+
does not include the items listed in the attached Exhibit A to this Agreement.
|
194 |
+
sentences:
|
195 |
+
- General Indemnities
|
196 |
+
- Intellectual Property Ownership
|
197 |
+
- Governing Law
|
198 |
+
- source_sentence: "CBRE\n.\n\nHEVERTECH LTD\n.\n\n.\n \n.\n\nPreferred Supplier\
|
199 |
+
\ Light/Agreement\n.\n\n.\n \n.\n \n.\n\nAgreement; Number: NMS/16/050 |\n.\n\
|
200 |
+
\nQUALIFIED SERVICE LEVEL AGREEMENT\nBETWEEN\nCBRE MANAGED SERVICES LIMITED\n\
|
201 |
+
AND\nHEVERTECH LTDCBRE\n.\n\nHEVERTECH LTD\n.\n\n.\n \n.\n \n.\n\n.\n \n.\n\
|
202 |
+
\ \n.\n\n.\n \n.\n \n.\n\nPreferred!Supplier Light Agreement\ni]\n.\n\nW\\\
|
203 |
+
olaclelealelaters Ulin elsiea Niky AeyAOkLY)\n.\n\nTABLE OF CONTENTS:\n.\n\nQualified\
|
204 |
+
\ Service Level Agreement Pages 03 to 10 inclusive\n.\n\nAppendix 1 — Schedule\
|
205 |
+
\ of Rates Page\n.\n\nAppendix 2 — Key Contacts and Escalation Process Pages 8\
|
206 |
+
\ to 9 inclusive\n.\n\nAppendix 3 - Working Capital Scheme Pages 10\n.\n\n.\n\
|
207 |
+
\ \n.\n\nCBRE Managed Services Lid\nFebruary 2016 Page 2 of LOPreferred Supplier\
|
208 |
+
\ Light'A greement HEVERTECH LTD\n.\n\nAgreement Number: NMS/16/050\n.\n\n.\n\
|
209 |
+
\ \n\n\nTHIS AGREEMENT is made on 1° June 2016\nBETWEEN\n\n(1) CBRE Managed Services\
|
210 |
+
\ Limited (Registered in England No. 1799580) whose registered\noffice is at City\
|
211 |
+
\ Bridge House, 57 Southwark Street, London, SE1 1RU (“CBRE”); and\n\n(2) Hevertech\
|
212 |
+
\ Ltd (Registered in England No. 2803522) whose registered office is at: Unit\
|
213 |
+
\ 2\nTreefield Industrial Estate, Gildersome, Leeds, LS27 7JU (the “Supplier’).\n"
|
214 |
+
sentences:
|
215 |
+
- Non Solicitation
|
216 |
+
- Intellectual Property Infringement Indemnity
|
217 |
+
- Title of Agreement
|
218 |
+
- source_sentence: "\nThe management of each individual entity within a suppliers\
|
219 |
+
\ organization is responsible for\nimplementing the VAT Supplier Code of Conduct\
|
220 |
+
\ in their respective area of responsibility. They are\nobliged to take all appropriate\
|
221 |
+
\ action and provide the required structures and resources to ensure\nthat all\
|
222 |
+
\ employees in the entity are familiar with the VAT Supplier Code of Conduct and\
|
223 |
+
\ that its\nprinciples are fully implemented.\n.\n\nAll VAT suppliers are encouraged\
|
224 |
+
\ to direct any questions they might have with regard to the\ncontents, interpretation\
|
225 |
+
\ or implementation of the VAT Supplier Code of Conduct to the VAT Strategic\n\
|
226 |
+
Procurement function.\n.\n\n.\n \n.\n\nDocument created Release\nName Index Date\n\
|
227 |
+
.\n\n.\n \n.\n\nFile name\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\nPMS\
|
228 |
+
\ Document BPO1FO30EA MEY A 18.11.2014\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n\
|
229 |
+
.\n \n.\n\n.\n \n.\n\nWAT Strategic Procurement BP01FO30E\n.\n\nVakuumventile\
|
230 |
+
\ AG Supplier Code of Conduct Page 3 of 3\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\
|
231 |
+
\nWe, the undersigned, hereby confirm and declare in the name and on behalf of\
|
232 |
+
\ our company that\n.\n\n1. we have received the VAT Supplier Code of Condex;\n\
|
233 |
+
.\n\n2. by signing this declaration, we accept and commit to complying with all\
|
234 |
+
\ rules and requirements as\nlaid out in the VAT Supplier Code of Conduct;\n.\n\
|
235 |
+
\n3. we accept that this declaration shall be exclusively governed by the material\
|
236 |
+
\ laws of Switzerland,\nexcluding the UN Law of Sales (CISG).\n.\n\nPlacelDate\
|
237 |
+
\ —-Singagore. / tone 2077\nCompany Kien Ann Engineering Pe ad\nStreet 3c 500\
|
238 |
+
\ kovo Cirle\n.\n\nPost codelcity Singapore 627035\n.\n\nName of authorized signatory\
|
239 |
+
\ Jameson Low\n.\n\nL. Ze\nSignature << : Ly eA\n* fh\n20,\nXn _A\nCETES\n.\n\n\
|
240 |
+
1. Please sign one (1) original c Of this document.\n2. Please note that only\
|
241 |
+
\ duly authorized personnel of your company may sign this document.\n3. Please\
|
242 |
+
\ send the duly signed original copy by conventional mail to:\nVAT VAKUUMVENTILE\
|
243 |
+
\ AG, SEELISTRASSE 1, STRATEGISCHER EINKAUF, CH-9469 HAAG\n.\n\n.\n \n.\n\n.\n\
|
244 |
+
\ \n.\n\n.\n \n.\n\nDocument created Release\n.\n\n.\n \n.\n\nFile name\nName\
|
245 |
+
\ Index Date\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n\
|
246 |
+
\ \n.\n\n.\n \n.\n\nPMS Document BPO1FO30EA MEY A 18.11.2014\n\n \n\n \n\nAll\
|
247 |
+
\ business is conducted in compliance with governing national and international\
|
248 |
+
\ laws and\nregulations. As a matter of principle, we honor agreements and obligations\
|
249 |
+
\ we have entered into\nvoluntarily. All suppliers are obliged to carefully study\
|
250 |
+
\ the rules and regulations pertinent to their\narea of responsibility and ensure\
|
251 |
+
\ full compliance. In case of doubt or queries, they are obliged to\nseek additional\
|
252 |
+
\ information and guidance from the appropriate channels or persons in charge.\
|
253 |
+
\ VAT\nhas a zero tolerance policy with regard to violations of its Supplier Code\
|
254 |
+
\ of Conduct. Violations may\nlead to appropriate action being taken against the\
|
255 |
+
\ supplier.\n.\n\n2. Fair competition\n"
|
256 |
+
sentences:
|
257 |
+
- Absolute Maximum Amount of Liability
|
258 |
+
- Governing Law
|
259 |
+
- Third Party Beneficiary
|
260 |
+
model-index:
|
261 |
+
- name: BGE base Financial Matryoshka
|
262 |
+
results:
|
263 |
+
- task:
|
264 |
+
type: information-retrieval
|
265 |
+
name: Information Retrieval
|
266 |
+
dataset:
|
267 |
+
name: dim 768
|
268 |
+
type: dim_768
|
269 |
+
metrics:
|
270 |
+
- type: cosine_accuracy@1
|
271 |
+
value: 0.007263922518159807
|
272 |
+
name: Cosine Accuracy@1
|
273 |
+
- type: cosine_accuracy@3
|
274 |
+
value: 0.021791767554479417
|
275 |
+
name: Cosine Accuracy@3
|
276 |
+
- type: cosine_accuracy@5
|
277 |
+
value: 0.03026634382566586
|
278 |
+
name: Cosine Accuracy@5
|
279 |
+
- type: cosine_accuracy@10
|
280 |
+
value: 0.06174334140435835
|
281 |
+
name: Cosine Accuracy@10
|
282 |
+
- type: cosine_precision@1
|
283 |
+
value: 0.007263922518159807
|
284 |
+
name: Cosine Precision@1
|
285 |
+
- type: cosine_precision@3
|
286 |
+
value: 0.007263922518159807
|
287 |
+
name: Cosine Precision@3
|
288 |
+
- type: cosine_precision@5
|
289 |
+
value: 0.006053268765133172
|
290 |
+
name: Cosine Precision@5
|
291 |
+
- type: cosine_precision@10
|
292 |
+
value: 0.006174334140435836
|
293 |
+
name: Cosine Precision@10
|
294 |
+
- type: cosine_recall@1
|
295 |
+
value: 0.007263922518159807
|
296 |
+
name: Cosine Recall@1
|
297 |
+
- type: cosine_recall@3
|
298 |
+
value: 0.021791767554479417
|
299 |
+
name: Cosine Recall@3
|
300 |
+
- type: cosine_recall@5
|
301 |
+
value: 0.03026634382566586
|
302 |
+
name: Cosine Recall@5
|
303 |
+
- type: cosine_recall@10
|
304 |
+
value: 0.06174334140435835
|
305 |
+
name: Cosine Recall@10
|
306 |
+
- type: cosine_ndcg@10
|
307 |
+
value: 0.028939379669254476
|
308 |
+
name: Cosine Ndcg@10
|
309 |
+
- type: cosine_mrr@10
|
310 |
+
value: 0.019243149237095962
|
311 |
+
name: Cosine Mrr@10
|
312 |
+
- type: cosine_map@100
|
313 |
+
value: 0.029673742520760122
|
314 |
+
name: Cosine Map@100
|
315 |
+
- task:
|
316 |
+
type: information-retrieval
|
317 |
+
name: Information Retrieval
|
318 |
+
dataset:
|
319 |
+
name: dim 512
|
320 |
+
type: dim_512
|
321 |
+
metrics:
|
322 |
+
- type: cosine_accuracy@1
|
323 |
+
value: 0.006053268765133172
|
324 |
+
name: Cosine Accuracy@1
|
325 |
+
- type: cosine_accuracy@3
|
326 |
+
value: 0.021791767554479417
|
327 |
+
name: Cosine Accuracy@3
|
328 |
+
- type: cosine_accuracy@5
|
329 |
+
value: 0.031476997578692496
|
330 |
+
name: Cosine Accuracy@5
|
331 |
+
- type: cosine_accuracy@10
|
332 |
+
value: 0.06174334140435835
|
333 |
+
name: Cosine Accuracy@10
|
334 |
+
- type: cosine_precision@1
|
335 |
+
value: 0.006053268765133172
|
336 |
+
name: Cosine Precision@1
|
337 |
+
- type: cosine_precision@3
|
338 |
+
value: 0.007263922518159805
|
339 |
+
name: Cosine Precision@3
|
340 |
+
- type: cosine_precision@5
|
341 |
+
value: 0.006295399515738498
|
342 |
+
name: Cosine Precision@5
|
343 |
+
- type: cosine_precision@10
|
344 |
+
value: 0.006174334140435836
|
345 |
+
name: Cosine Precision@10
|
346 |
+
- type: cosine_recall@1
|
347 |
+
value: 0.006053268765133172
|
348 |
+
name: Cosine Recall@1
|
349 |
+
- type: cosine_recall@3
|
350 |
+
value: 0.021791767554479417
|
351 |
+
name: Cosine Recall@3
|
352 |
+
- type: cosine_recall@5
|
353 |
+
value: 0.031476997578692496
|
354 |
+
name: Cosine Recall@5
|
355 |
+
- type: cosine_recall@10
|
356 |
+
value: 0.06174334140435835
|
357 |
+
name: Cosine Recall@10
|
358 |
+
- type: cosine_ndcg@10
|
359 |
+
value: 0.028312145815995213
|
360 |
+
name: Cosine Ndcg@10
|
361 |
+
- type: cosine_mrr@10
|
362 |
+
value: 0.018378876974518614
|
363 |
+
name: Cosine Mrr@10
|
364 |
+
- type: cosine_map@100
|
365 |
+
value: 0.029262713498052723
|
366 |
+
name: Cosine Map@100
|
367 |
+
- task:
|
368 |
+
type: information-retrieval
|
369 |
+
name: Information Retrieval
|
370 |
+
dataset:
|
371 |
+
name: dim 256
|
372 |
+
type: dim_256
|
373 |
+
metrics:
|
374 |
+
- type: cosine_accuracy@1
|
375 |
+
value: 0.007263922518159807
|
376 |
+
name: Cosine Accuracy@1
|
377 |
+
- type: cosine_accuracy@3
|
378 |
+
value: 0.018159806295399514
|
379 |
+
name: Cosine Accuracy@3
|
380 |
+
- type: cosine_accuracy@5
|
381 |
+
value: 0.02784503631961259
|
382 |
+
name: Cosine Accuracy@5
|
383 |
+
- type: cosine_accuracy@10
|
384 |
+
value: 0.05811138014527845
|
385 |
+
name: Cosine Accuracy@10
|
386 |
+
- type: cosine_precision@1
|
387 |
+
value: 0.007263922518159807
|
388 |
+
name: Cosine Precision@1
|
389 |
+
- type: cosine_precision@3
|
390 |
+
value: 0.006053268765133171
|
391 |
+
name: Cosine Precision@3
|
392 |
+
- type: cosine_precision@5
|
393 |
+
value: 0.0055690072639225175
|
394 |
+
name: Cosine Precision@5
|
395 |
+
- type: cosine_precision@10
|
396 |
+
value: 0.0058111380145278455
|
397 |
+
name: Cosine Precision@10
|
398 |
+
- type: cosine_recall@1
|
399 |
+
value: 0.007263922518159807
|
400 |
+
name: Cosine Recall@1
|
401 |
+
- type: cosine_recall@3
|
402 |
+
value: 0.018159806295399514
|
403 |
+
name: Cosine Recall@3
|
404 |
+
- type: cosine_recall@5
|
405 |
+
value: 0.02784503631961259
|
406 |
+
name: Cosine Recall@5
|
407 |
+
- type: cosine_recall@10
|
408 |
+
value: 0.05811138014527845
|
409 |
+
name: Cosine Recall@10
|
410 |
+
- type: cosine_ndcg@10
|
411 |
+
value: 0.026798615255571104
|
412 |
+
name: Cosine Ndcg@10
|
413 |
+
- type: cosine_mrr@10
|
414 |
+
value: 0.017617414197317337
|
415 |
+
name: Cosine Mrr@10
|
416 |
+
- type: cosine_map@100
|
417 |
+
value: 0.029447278389058605
|
418 |
+
name: Cosine Map@100
|
419 |
+
- task:
|
420 |
+
type: information-retrieval
|
421 |
+
name: Information Retrieval
|
422 |
+
dataset:
|
423 |
+
name: dim 128
|
424 |
+
type: dim_128
|
425 |
+
metrics:
|
426 |
+
- type: cosine_accuracy@1
|
427 |
+
value: 0.0036319612590799033
|
428 |
+
name: Cosine Accuracy@1
|
429 |
+
- type: cosine_accuracy@3
|
430 |
+
value: 0.01694915254237288
|
431 |
+
name: Cosine Accuracy@3
|
432 |
+
- type: cosine_accuracy@5
|
433 |
+
value: 0.02784503631961259
|
434 |
+
name: Cosine Accuracy@5
|
435 |
+
- type: cosine_accuracy@10
|
436 |
+
value: 0.06295399515738499
|
437 |
+
name: Cosine Accuracy@10
|
438 |
+
- type: cosine_precision@1
|
439 |
+
value: 0.0036319612590799033
|
440 |
+
name: Cosine Precision@1
|
441 |
+
- type: cosine_precision@3
|
442 |
+
value: 0.005649717514124293
|
443 |
+
name: Cosine Precision@3
|
444 |
+
- type: cosine_precision@5
|
445 |
+
value: 0.005569007263922519
|
446 |
+
name: Cosine Precision@5
|
447 |
+
- type: cosine_precision@10
|
448 |
+
value: 0.006295399515738499
|
449 |
+
name: Cosine Precision@10
|
450 |
+
- type: cosine_recall@1
|
451 |
+
value: 0.0036319612590799033
|
452 |
+
name: Cosine Recall@1
|
453 |
+
- type: cosine_recall@3
|
454 |
+
value: 0.01694915254237288
|
455 |
+
name: Cosine Recall@3
|
456 |
+
- type: cosine_recall@5
|
457 |
+
value: 0.02784503631961259
|
458 |
+
name: Cosine Recall@5
|
459 |
+
- type: cosine_recall@10
|
460 |
+
value: 0.06295399515738499
|
461 |
+
name: Cosine Recall@10
|
462 |
+
- type: cosine_ndcg@10
|
463 |
+
value: 0.027052121582546967
|
464 |
+
name: Cosine Ndcg@10
|
465 |
+
- type: cosine_mrr@10
|
466 |
+
value: 0.01650236365732733
|
467 |
+
name: Cosine Mrr@10
|
468 |
+
- type: cosine_map@100
|
469 |
+
value: 0.028509723825826283
|
470 |
+
name: Cosine Map@100
|
471 |
+
- task:
|
472 |
+
type: information-retrieval
|
473 |
+
name: Information Retrieval
|
474 |
+
dataset:
|
475 |
+
name: dim 64
|
476 |
+
type: dim_64
|
477 |
+
metrics:
|
478 |
+
- type: cosine_accuracy@1
|
479 |
+
value: 0.004842615012106538
|
480 |
+
name: Cosine Accuracy@1
|
481 |
+
- type: cosine_accuracy@3
|
482 |
+
value: 0.025423728813559324
|
483 |
+
name: Cosine Accuracy@3
|
484 |
+
- type: cosine_accuracy@5
|
485 |
+
value: 0.03753026634382567
|
486 |
+
name: Cosine Accuracy@5
|
487 |
+
- type: cosine_accuracy@10
|
488 |
+
value: 0.06053268765133172
|
489 |
+
name: Cosine Accuracy@10
|
490 |
+
- type: cosine_precision@1
|
491 |
+
value: 0.004842615012106538
|
492 |
+
name: Cosine Precision@1
|
493 |
+
- type: cosine_precision@3
|
494 |
+
value: 0.008474576271186439
|
495 |
+
name: Cosine Precision@3
|
496 |
+
- type: cosine_precision@5
|
497 |
+
value: 0.007506053268765135
|
498 |
+
name: Cosine Precision@5
|
499 |
+
- type: cosine_precision@10
|
500 |
+
value: 0.006053268765133172
|
501 |
+
name: Cosine Precision@10
|
502 |
+
- type: cosine_recall@1
|
503 |
+
value: 0.004842615012106538
|
504 |
+
name: Cosine Recall@1
|
505 |
+
- type: cosine_recall@3
|
506 |
+
value: 0.025423728813559324
|
507 |
+
name: Cosine Recall@3
|
508 |
+
- type: cosine_recall@5
|
509 |
+
value: 0.03753026634382567
|
510 |
+
name: Cosine Recall@5
|
511 |
+
- type: cosine_recall@10
|
512 |
+
value: 0.06053268765133172
|
513 |
+
name: Cosine Recall@10
|
514 |
+
- type: cosine_ndcg@10
|
515 |
+
value: 0.028532073992406013
|
516 |
+
name: Cosine Ndcg@10
|
517 |
+
- type: cosine_mrr@10
|
518 |
+
value: 0.018836715477151305
|
519 |
+
name: Cosine Mrr@10
|
520 |
+
- type: cosine_map@100
|
521 |
+
value: 0.03024491886170751
|
522 |
+
name: Cosine Map@100
|
523 |
+
---
|
524 |
+
|
525 |
+
# BGE base Financial Matryoshka
|
526 |
+
|
527 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
528 |
+
|
529 |
+
## Model Details
|
530 |
+
|
531 |
+
### Model Description
|
532 |
+
- **Model Type:** Sentence Transformer
|
533 |
+
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
|
534 |
+
- **Maximum Sequence Length:** 512 tokens
|
535 |
+
- **Output Dimensionality:** 768 tokens
|
536 |
+
- **Similarity Function:** Cosine Similarity
|
537 |
+
<!-- - **Training Dataset:** Unknown -->
|
538 |
+
- **Language:** en
|
539 |
+
- **License:** apache-2.0
|
540 |
+
|
541 |
+
### Model Sources
|
542 |
+
|
543 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
544 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
545 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
546 |
+
|
547 |
+
### Full Model Architecture
|
548 |
+
|
549 |
+
```
|
550 |
+
SentenceTransformer(
|
551 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
|
552 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
553 |
+
(2): Normalize()
|
554 |
+
)
|
555 |
+
```
|
556 |
+
|
557 |
+
## Usage
|
558 |
+
|
559 |
+
### Direct Usage (Sentence Transformers)
|
560 |
+
|
561 |
+
First install the Sentence Transformers library:
|
562 |
+
|
563 |
+
```bash
|
564 |
+
pip install -U sentence-transformers
|
565 |
+
```
|
566 |
+
|
567 |
+
Then you can load this model and run inference.
|
568 |
+
```python
|
569 |
+
from sentence_transformers import SentenceTransformer
|
570 |
+
|
571 |
+
# Download from the 🤗 Hub
|
572 |
+
model = SentenceTransformer("RishuD7/exigent-bge-base-financial-matryoshka")
|
573 |
+
# Run inference
|
574 |
+
sentences = [
|
575 |
+
'\nThe management of each individual entity within a suppliers organization is responsible for\nimplementing the VAT Supplier Code of Conduct in their respective area of responsibility. They are\nobliged to take all appropriate action and provide the required structures and resources to ensure\nthat all employees in the entity are familiar with the VAT Supplier Code of Conduct and that its\nprinciples are fully implemented.\n.\n\nAll VAT suppliers are encouraged to direct any questions they might have with regard to the\ncontents, interpretation or implementation of the VAT Supplier Code of Conduct to the VAT Strategic\nProcurement function.\n.\n\n.\n \n.\n\nDocument created Release\nName Index Date\n.\n\n.\n \n.\n\nFile name\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\nPMS Document BPO1FO30EA MEY A 18.11.2014\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\nWAT Strategic Procurement BP01FO30E\n.\n\nVakuumventile AG Supplier Code of Conduct Page 3 of 3\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\nWe, the undersigned, hereby confirm and declare in the name and on behalf of our company that\n.\n\n1. we have received the VAT Supplier Code of Condex;\n.\n\n2. by signing this declaration, we accept and commit to complying with all rules and requirements as\nlaid out in the VAT Supplier Code of Conduct;\n.\n\n3. we accept that this declaration shall be exclusively governed by the material laws of Switzerland,\nexcluding the UN Law of Sales (CISG).\n.\n\nPlacelDate —-Singagore. / tone 2077\nCompany Kien Ann Engineering Pe ad\nStreet 3c 500 kovo Cirle\n.\n\nPost codelcity Singapore 627035\n.\n\nName of authorized signatory Jameson Low\n.\n\nL. Ze\nSignature << : Ly eA\n* fh\n20,\nXn _A\nCETES\n.\n\n1. Please sign one (1) original c Of this document.\n2. Please note that only duly authorized personnel of your company may sign this document.\n3. Please send the duly signed original copy by conventional mail to:\nVAT VAKUUMVENTILE AG, SEELISTRASSE 1, STRATEGISCHER EINKAUF, CH-9469 HAAG\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\nDocument created Release\n.\n\n.\n \n.\n\nFile name\nName Index Date\n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\n.\n \n.\n\nPMS Document BPO1FO30EA MEY A 18.11.2014\n\n \n\n \n\nAll business is conducted in compliance with governing national and international laws and\nregulations. As a matter of principle, we honor agreements and obligations we have entered into\nvoluntarily. All suppliers are obliged to carefully study the rules and regulations pertinent to their\narea of responsibility and ensure full compliance. In case of doubt or queries, they are obliged to\nseek additional information and guidance from the appropriate channels or persons in charge. VAT\nhas a zero tolerance policy with regard to violations of its Supplier Code of Conduct. Violations may\nlead to appropriate action being taken against the supplier.\n.\n\n2. Fair competition\n',
|
576 |
+
'Governing Law',
|
577 |
+
'Absolute Maximum Amount of Liability',
|
578 |
+
]
|
579 |
+
embeddings = model.encode(sentences)
|
580 |
+
print(embeddings.shape)
|
581 |
+
# [3, 768]
|
582 |
+
|
583 |
+
# Get the similarity scores for the embeddings
|
584 |
+
similarities = model.similarity(embeddings, embeddings)
|
585 |
+
print(similarities.shape)
|
586 |
+
# [3, 3]
|
587 |
+
```
|
588 |
+
|
589 |
+
<!--
|
590 |
+
### Direct Usage (Transformers)
|
591 |
+
|
592 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
593 |
+
|
594 |
+
</details>
|
595 |
+
-->
|
596 |
+
|
597 |
+
<!--
|
598 |
+
### Downstream Usage (Sentence Transformers)
|
599 |
+
|
600 |
+
You can finetune this model on your own dataset.
|
601 |
+
|
602 |
+
<details><summary>Click to expand</summary>
|
603 |
+
|
604 |
+
</details>
|
605 |
+
-->
|
606 |
+
|
607 |
+
<!--
|
608 |
+
### Out-of-Scope Use
|
609 |
+
|
610 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
611 |
+
-->
|
612 |
+
|
613 |
+
## Evaluation
|
614 |
+
|
615 |
+
### Metrics
|
616 |
+
|
617 |
+
#### Information Retrieval
|
618 |
+
* Dataset: `dim_768`
|
619 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
620 |
+
|
621 |
+
| Metric | Value |
|
622 |
+
|:--------------------|:-----------|
|
623 |
+
| cosine_accuracy@1 | 0.0073 |
|
624 |
+
| cosine_accuracy@3 | 0.0218 |
|
625 |
+
| cosine_accuracy@5 | 0.0303 |
|
626 |
+
| cosine_accuracy@10 | 0.0617 |
|
627 |
+
| cosine_precision@1 | 0.0073 |
|
628 |
+
| cosine_precision@3 | 0.0073 |
|
629 |
+
| cosine_precision@5 | 0.0061 |
|
630 |
+
| cosine_precision@10 | 0.0062 |
|
631 |
+
| cosine_recall@1 | 0.0073 |
|
632 |
+
| cosine_recall@3 | 0.0218 |
|
633 |
+
| cosine_recall@5 | 0.0303 |
|
634 |
+
| cosine_recall@10 | 0.0617 |
|
635 |
+
| cosine_ndcg@10 | 0.0289 |
|
636 |
+
| cosine_mrr@10 | 0.0192 |
|
637 |
+
| **cosine_map@100** | **0.0297** |
|
638 |
+
|
639 |
+
#### Information Retrieval
|
640 |
+
* Dataset: `dim_512`
|
641 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
642 |
+
|
643 |
+
| Metric | Value |
|
644 |
+
|:--------------------|:-----------|
|
645 |
+
| cosine_accuracy@1 | 0.0061 |
|
646 |
+
| cosine_accuracy@3 | 0.0218 |
|
647 |
+
| cosine_accuracy@5 | 0.0315 |
|
648 |
+
| cosine_accuracy@10 | 0.0617 |
|
649 |
+
| cosine_precision@1 | 0.0061 |
|
650 |
+
| cosine_precision@3 | 0.0073 |
|
651 |
+
| cosine_precision@5 | 0.0063 |
|
652 |
+
| cosine_precision@10 | 0.0062 |
|
653 |
+
| cosine_recall@1 | 0.0061 |
|
654 |
+
| cosine_recall@3 | 0.0218 |
|
655 |
+
| cosine_recall@5 | 0.0315 |
|
656 |
+
| cosine_recall@10 | 0.0617 |
|
657 |
+
| cosine_ndcg@10 | 0.0283 |
|
658 |
+
| cosine_mrr@10 | 0.0184 |
|
659 |
+
| **cosine_map@100** | **0.0293** |
|
660 |
+
|
661 |
+
#### Information Retrieval
|
662 |
+
* Dataset: `dim_256`
|
663 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
664 |
+
|
665 |
+
| Metric | Value |
|
666 |
+
|:--------------------|:-----------|
|
667 |
+
| cosine_accuracy@1 | 0.0073 |
|
668 |
+
| cosine_accuracy@3 | 0.0182 |
|
669 |
+
| cosine_accuracy@5 | 0.0278 |
|
670 |
+
| cosine_accuracy@10 | 0.0581 |
|
671 |
+
| cosine_precision@1 | 0.0073 |
|
672 |
+
| cosine_precision@3 | 0.0061 |
|
673 |
+
| cosine_precision@5 | 0.0056 |
|
674 |
+
| cosine_precision@10 | 0.0058 |
|
675 |
+
| cosine_recall@1 | 0.0073 |
|
676 |
+
| cosine_recall@3 | 0.0182 |
|
677 |
+
| cosine_recall@5 | 0.0278 |
|
678 |
+
| cosine_recall@10 | 0.0581 |
|
679 |
+
| cosine_ndcg@10 | 0.0268 |
|
680 |
+
| cosine_mrr@10 | 0.0176 |
|
681 |
+
| **cosine_map@100** | **0.0294** |
|
682 |
+
|
683 |
+
#### Information Retrieval
|
684 |
+
* Dataset: `dim_128`
|
685 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
686 |
+
|
687 |
+
| Metric | Value |
|
688 |
+
|:--------------------|:-----------|
|
689 |
+
| cosine_accuracy@1 | 0.0036 |
|
690 |
+
| cosine_accuracy@3 | 0.0169 |
|
691 |
+
| cosine_accuracy@5 | 0.0278 |
|
692 |
+
| cosine_accuracy@10 | 0.063 |
|
693 |
+
| cosine_precision@1 | 0.0036 |
|
694 |
+
| cosine_precision@3 | 0.0056 |
|
695 |
+
| cosine_precision@5 | 0.0056 |
|
696 |
+
| cosine_precision@10 | 0.0063 |
|
697 |
+
| cosine_recall@1 | 0.0036 |
|
698 |
+
| cosine_recall@3 | 0.0169 |
|
699 |
+
| cosine_recall@5 | 0.0278 |
|
700 |
+
| cosine_recall@10 | 0.063 |
|
701 |
+
| cosine_ndcg@10 | 0.0271 |
|
702 |
+
| cosine_mrr@10 | 0.0165 |
|
703 |
+
| **cosine_map@100** | **0.0285** |
|
704 |
+
|
705 |
+
#### Information Retrieval
|
706 |
+
* Dataset: `dim_64`
|
707 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
708 |
+
|
709 |
+
| Metric | Value |
|
710 |
+
|:--------------------|:-----------|
|
711 |
+
| cosine_accuracy@1 | 0.0048 |
|
712 |
+
| cosine_accuracy@3 | 0.0254 |
|
713 |
+
| cosine_accuracy@5 | 0.0375 |
|
714 |
+
| cosine_accuracy@10 | 0.0605 |
|
715 |
+
| cosine_precision@1 | 0.0048 |
|
716 |
+
| cosine_precision@3 | 0.0085 |
|
717 |
+
| cosine_precision@5 | 0.0075 |
|
718 |
+
| cosine_precision@10 | 0.0061 |
|
719 |
+
| cosine_recall@1 | 0.0048 |
|
720 |
+
| cosine_recall@3 | 0.0254 |
|
721 |
+
| cosine_recall@5 | 0.0375 |
|
722 |
+
| cosine_recall@10 | 0.0605 |
|
723 |
+
| cosine_ndcg@10 | 0.0285 |
|
724 |
+
| cosine_mrr@10 | 0.0188 |
|
725 |
+
| **cosine_map@100** | **0.0302** |
|
726 |
+
|
727 |
+
<!--
|
728 |
+
## Bias, Risks and Limitations
|
729 |
+
|
730 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
731 |
+
-->
|
732 |
+
|
733 |
+
<!--
|
734 |
+
### Recommendations
|
735 |
+
|
736 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
737 |
+
-->
|
738 |
+
|
739 |
+
## Training Details
|
740 |
+
|
741 |
+
### Training Dataset
|
742 |
+
|
743 |
+
#### Unnamed Dataset
|
744 |
+
|
745 |
+
|
746 |
+
* Size: 3,305 training samples
|
747 |
+
* Columns: <code>positive</code> and <code>anchor</code>
|
748 |
+
* Approximate statistics based on the first 1000 samples:
|
749 |
+
| | positive | anchor |
|
750 |
+
|:--------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
|
751 |
+
| type | string | string |
|
752 |
+
| details | <ul><li>min: 123 tokens</li><li>mean: 353.07 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.37 tokens</li><li>max: 8 tokens</li></ul> |
|
753 |
+
* Samples:
|
754 |
+
| positive | anchor |
|
755 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------|
|
756 |
+
| <code>In no event shall CBRE, Client, or their respective affiliates incur liability under this agreement or otherwise relating to the Services beyond the insurance proceeds available with respect to the particular matter under the Insurance Policies required to be carried by CBRE AND Client under Article 6 above including, if applicable, proceeds of self-insurance. Each party shall and shall cause its affiliates to look solely to such insurance proceeds (and any such proceeds paid through self-insurance) to satisfy its claims against the released parties and agrees that it shall have no right of recovery beyond such proceeds; provided, however, that if insurance proceeds under such policies are not paid because a party has failed to maintain such policies, comply with policy requirements or, in the case of self-insurance, unreasonably denied a claim, such party shall be liable for the amounts that otherwise would have been payable under such policies had such party maintained such policies, complied with the policy requirement or not unreasonably denied such claim, as the case may be.</code> | <code>Absolute Maximum Amount of Liability</code> |
|
757 |
+
| <code>4. Rent. <br>4.01 From and after the Commencement Date, Tenant shall pay Landlord, without any<br>setoff or deduction, unless expressly set forth in this Lease, all Base Rent and Additional Rent<br>due for the Term (collectively referred to as "Rent"). "Additional Rent" means all sums<br>(exclusive of Base Rent) that Tenant is required to pay Landlord under this Lease. Tenant shall<br>pay and be liable for all rental, sales and use taxes (but excluding income taxes), if any,<br>imposed upon or measured by Rent. Base Rent and recurring monthly charges of Additional<br>Rent shall be due and payable in advance on the first day of each calendar month without<br>notice or demand, provided that the installment of Base Rent attributable to the first (1st) full<br>calendar month of the Term following the Abatement Period shall be due concurrently with the<br>execution of this Lease by Tenant. All other items of Rent shall be due and payable on or<br>before thirty (30) days after billing by Landlord. Rent shall be made payable to the entity, and<br>sent to the address, that Landlord designates and shall be made by good and sufficient check or<br>by other means acceptable to Landlord. Landlord may return to Tenant, at any time within<br>fifteen (15) days after receiving same, any payment of Rent (a) made following any Default<br>(irrespective of whether Landlord has commenced the exercise of any remedy), or (b) that is<br>less than the amount due. Each such returned payment (whether made by returning Tenant's<br>actual check, or by issuing a refund in the event Tenant's check was deposited) shall be<br>conclusively presumed not to have been received or approved by Landlord. If Tenant does not<br>pay any Rent when due hereunder, Tenant shall pay Landlord an administration fee in the<br>amount of five percent (5%) of the past due amount. In addition, past due Rent shall accrue<br>interest at a rate equal to the lesser of (i) twelve percent (12%) per annum or (ii) the maximum<br>legal rate, and Tenant shall pay Landlord a fee for any checks returned by Tenant's bank for<br>any reason. Notwithstanding the foregoing, no such late charge or of interest shall be imposed<br>with respect to the first (1st) late payment in any calendar year, but not with respect to more<br>than three (3) such late payments during the initial Term of this Lease. </code> | <code>Late Payment Charges</code> |
|
758 |
+
| <code>Term This Agreement shall come into force and shall last unlimited from such date. Either Party may however terminate this Agreement at any time by giving upon thirty (30) days' written notice to the other Party. The Receiving Party's obligations contained in this Agreement to keep confidential and restrict use of the Disclosing Party's Confidential Information shall sur- vive for a period of five (5) years from the date of its termination for any reason whatsoever. lX. Contractual penalty<br>For the purposes of this Non-Disclosure Agreement, " Confidential Information" includes all technical and/or commercial and/or financial information in the field designated in section 1., which a contracting Party (hereinafter referred to as the "EQ€i1gPedy") makes, or has made, accessible to the other contracting Party (hereinafter referred to as the ".&eiyi!g Partv") in oral, written, tangible or other form (e.9. disk, data carrier) directly or indirectly, in- cluding but not limited to, drawings, models, components, and other material. Confidential In- formation is to be identified as such. Orally communicated or visually, information having been designated as confidential at the time of disclosure will be confirmed as such in writing by the Disclosing Party within 30 (thirty) days from such disclosure being understood thatlhe ./A information will be considered Confidential Information during that period of 30 (thirty) days. /L t'-4 PF 0233 (September 2016) page 1 of 5 ä =.<br> PFEIFFER F<br>.<br> F<br>.<br> VACUUM<br></code> | <code>Termination for Convenience</code> |
|
759 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
760 |
+
```json
|
761 |
+
{
|
762 |
+
"loss": "MultipleNegativesRankingLoss",
|
763 |
+
"matryoshka_dims": [
|
764 |
+
768,
|
765 |
+
512,
|
766 |
+
256,
|
767 |
+
128,
|
768 |
+
64
|
769 |
+
],
|
770 |
+
"matryoshka_weights": [
|
771 |
+
1,
|
772 |
+
1,
|
773 |
+
1,
|
774 |
+
1,
|
775 |
+
1
|
776 |
+
],
|
777 |
+
"n_dims_per_step": -1
|
778 |
+
}
|
779 |
+
```
|
780 |
+
|
781 |
+
### Training Hyperparameters
|
782 |
+
#### Non-Default Hyperparameters
|
783 |
+
|
784 |
+
- `eval_strategy`: epoch
|
785 |
+
- `per_device_train_batch_size`: 32
|
786 |
+
- `per_device_eval_batch_size`: 16
|
787 |
+
- `gradient_accumulation_steps`: 16
|
788 |
+
- `learning_rate`: 2e-05
|
789 |
+
- `num_train_epochs`: 5
|
790 |
+
- `lr_scheduler_type`: cosine
|
791 |
+
- `warmup_ratio`: 0.1
|
792 |
+
- `tf32`: False
|
793 |
+
- `load_best_model_at_end`: True
|
794 |
+
- `optim`: adamw_torch_fused
|
795 |
+
- `batch_sampler`: no_duplicates
|
796 |
+
|
797 |
+
#### All Hyperparameters
|
798 |
+
<details><summary>Click to expand</summary>
|
799 |
+
|
800 |
+
- `overwrite_output_dir`: False
|
801 |
+
- `do_predict`: False
|
802 |
+
- `eval_strategy`: epoch
|
803 |
+
- `prediction_loss_only`: True
|
804 |
+
- `per_device_train_batch_size`: 32
|
805 |
+
- `per_device_eval_batch_size`: 16
|
806 |
+
- `per_gpu_train_batch_size`: None
|
807 |
+
- `per_gpu_eval_batch_size`: None
|
808 |
+
- `gradient_accumulation_steps`: 16
|
809 |
+
- `eval_accumulation_steps`: None
|
810 |
+
- `learning_rate`: 2e-05
|
811 |
+
- `weight_decay`: 0.0
|
812 |
+
- `adam_beta1`: 0.9
|
813 |
+
- `adam_beta2`: 0.999
|
814 |
+
- `adam_epsilon`: 1e-08
|
815 |
+
- `max_grad_norm`: 1.0
|
816 |
+
- `num_train_epochs`: 5
|
817 |
+
- `max_steps`: -1
|
818 |
+
- `lr_scheduler_type`: cosine
|
819 |
+
- `lr_scheduler_kwargs`: {}
|
820 |
+
- `warmup_ratio`: 0.1
|
821 |
+
- `warmup_steps`: 0
|
822 |
+
- `log_level`: passive
|
823 |
+
- `log_level_replica`: warning
|
824 |
+
- `log_on_each_node`: True
|
825 |
+
- `logging_nan_inf_filter`: True
|
826 |
+
- `save_safetensors`: True
|
827 |
+
- `save_on_each_node`: False
|
828 |
+
- `save_only_model`: False
|
829 |
+
- `restore_callback_states_from_checkpoint`: False
|
830 |
+
- `no_cuda`: False
|
831 |
+
- `use_cpu`: False
|
832 |
+
- `use_mps_device`: False
|
833 |
+
- `seed`: 42
|
834 |
+
- `data_seed`: None
|
835 |
+
- `jit_mode_eval`: False
|
836 |
+
- `use_ipex`: False
|
837 |
+
- `bf16`: False
|
838 |
+
- `fp16`: False
|
839 |
+
- `fp16_opt_level`: O1
|
840 |
+
- `half_precision_backend`: auto
|
841 |
+
- `bf16_full_eval`: False
|
842 |
+
- `fp16_full_eval`: False
|
843 |
+
- `tf32`: False
|
844 |
+
- `local_rank`: 0
|
845 |
+
- `ddp_backend`: None
|
846 |
+
- `tpu_num_cores`: None
|
847 |
+
- `tpu_metrics_debug`: False
|
848 |
+
- `debug`: []
|
849 |
+
- `dataloader_drop_last`: False
|
850 |
+
- `dataloader_num_workers`: 0
|
851 |
+
- `dataloader_prefetch_factor`: None
|
852 |
+
- `past_index`: -1
|
853 |
+
- `disable_tqdm`: False
|
854 |
+
- `remove_unused_columns`: True
|
855 |
+
- `label_names`: None
|
856 |
+
- `load_best_model_at_end`: True
|
857 |
+
- `ignore_data_skip`: False
|
858 |
+
- `fsdp`: []
|
859 |
+
- `fsdp_min_num_params`: 0
|
860 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
861 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
862 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
863 |
+
- `deepspeed`: None
|
864 |
+
- `label_smoothing_factor`: 0.0
|
865 |
+
- `optim`: adamw_torch_fused
|
866 |
+
- `optim_args`: None
|
867 |
+
- `adafactor`: False
|
868 |
+
- `group_by_length`: False
|
869 |
+
- `length_column_name`: length
|
870 |
+
- `ddp_find_unused_parameters`: None
|
871 |
+
- `ddp_bucket_cap_mb`: None
|
872 |
+
- `ddp_broadcast_buffers`: False
|
873 |
+
- `dataloader_pin_memory`: True
|
874 |
+
- `dataloader_persistent_workers`: False
|
875 |
+
- `skip_memory_metrics`: True
|
876 |
+
- `use_legacy_prediction_loop`: False
|
877 |
+
- `push_to_hub`: False
|
878 |
+
- `resume_from_checkpoint`: None
|
879 |
+
- `hub_model_id`: None
|
880 |
+
- `hub_strategy`: every_save
|
881 |
+
- `hub_private_repo`: False
|
882 |
+
- `hub_always_push`: False
|
883 |
+
- `gradient_checkpointing`: False
|
884 |
+
- `gradient_checkpointing_kwargs`: None
|
885 |
+
- `include_inputs_for_metrics`: False
|
886 |
+
- `eval_do_concat_batches`: True
|
887 |
+
- `fp16_backend`: auto
|
888 |
+
- `push_to_hub_model_id`: None
|
889 |
+
- `push_to_hub_organization`: None
|
890 |
+
- `mp_parameters`:
|
891 |
+
- `auto_find_batch_size`: False
|
892 |
+
- `full_determinism`: False
|
893 |
+
- `torchdynamo`: None
|
894 |
+
- `ray_scope`: last
|
895 |
+
- `ddp_timeout`: 1800
|
896 |
+
- `torch_compile`: False
|
897 |
+
- `torch_compile_backend`: None
|
898 |
+
- `torch_compile_mode`: None
|
899 |
+
- `dispatch_batches`: None
|
900 |
+
- `split_batches`: None
|
901 |
+
- `include_tokens_per_second`: False
|
902 |
+
- `include_num_input_tokens_seen`: False
|
903 |
+
- `neftune_noise_alpha`: None
|
904 |
+
- `optim_target_modules`: None
|
905 |
+
- `batch_eval_metrics`: False
|
906 |
+
- `batch_sampler`: no_duplicates
|
907 |
+
- `multi_dataset_batch_sampler`: proportional
|
908 |
+
|
909 |
+
</details>
|
910 |
+
|
911 |
+
### Training Logs
|
912 |
+
| Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|
913 |
+
|:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
|
914 |
+
| 1.5385 | 10 | 7.981 | - | - | - | - | - |
|
915 |
+
| 3.0769 | 20 | 0.9258 | - | - | - | - | - |
|
916 |
+
| **4.6154** | **30** | **0.1708** | **0.0285** | **0.0294** | **0.0293** | **0.0302** | **0.0297** |
|
917 |
+
|
918 |
+
* The bold row denotes the saved checkpoint.
|
919 |
+
|
920 |
+
### Framework Versions
|
921 |
+
- Python: 3.10.12
|
922 |
+
- Sentence Transformers: 3.0.1
|
923 |
+
- Transformers: 4.41.2
|
924 |
+
- PyTorch: 2.1.2+cu121
|
925 |
+
- Accelerate: 0.32.1
|
926 |
+
- Datasets: 2.19.1
|
927 |
+
- Tokenizers: 0.19.1
|
928 |
+
|
929 |
+
## Citation
|
930 |
+
|
931 |
+
### BibTeX
|
932 |
+
|
933 |
+
#### Sentence Transformers
|
934 |
+
```bibtex
|
935 |
+
@inproceedings{reimers-2019-sentence-bert,
|
936 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
937 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
938 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
939 |
+
month = "11",
|
940 |
+
year = "2019",
|
941 |
+
publisher = "Association for Computational Linguistics",
|
942 |
+
url = "https://arxiv.org/abs/1908.10084",
|
943 |
+
}
|
944 |
+
```
|
945 |
+
|
946 |
+
#### MatryoshkaLoss
|
947 |
+
```bibtex
|
948 |
+
@misc{kusupati2024matryoshka,
|
949 |
+
title={Matryoshka Representation Learning},
|
950 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
951 |
+
year={2024},
|
952 |
+
eprint={2205.13147},
|
953 |
+
archivePrefix={arXiv},
|
954 |
+
primaryClass={cs.LG}
|
955 |
+
}
|
956 |
+
```
|
957 |
+
|
958 |
+
#### MultipleNegativesRankingLoss
|
959 |
+
```bibtex
|
960 |
+
@misc{henderson2017efficient,
|
961 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
962 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
963 |
+
year={2017},
|
964 |
+
eprint={1705.00652},
|
965 |
+
archivePrefix={arXiv},
|
966 |
+
primaryClass={cs.CL}
|
967 |
+
}
|
968 |
+
```
|
969 |
+
|
970 |
+
<!--
|
971 |
+
## Glossary
|
972 |
+
|
973 |
+
*Clearly define terms in order to be accessible across audiences.*
|
974 |
+
-->
|
975 |
+
|
976 |
+
<!--
|
977 |
+
## Model Card Authors
|
978 |
+
|
979 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
980 |
+
-->
|
981 |
+
|
982 |
+
<!--
|
983 |
+
## Model Card Contact
|
984 |
+
|
985 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
986 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-base-en-v1.5",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 3072,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 12,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"torch_dtype": "float32",
|
28 |
+
"transformers_version": "4.41.2",
|
29 |
+
"type_vocab_size": 2,
|
30 |
+
"use_cache": true,
|
31 |
+
"vocab_size": 30522
|
32 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.41.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6c14618cf815a56268598d34741b854e979b284a29bff453c9bdccdbadf5d86
|
3 |
+
size 437951328
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|