--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: ner_model_2 results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: test args: conll2003 metrics: - name: Precision type: precision value: 0.8793253347243958 - name: Recall type: recall value: 0.8953611898016998 - name: F1 type: f1 value: 0.8872708132292307 - name: Accuracy type: accuracy value: 0.9776031011090772 --- # ner_model_2 This model is a fine-tuned version of [distilbert/distilbert-base-cased](https://huggingface.co/distilbert/distilbert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.1230 - Precision: 0.8793 - Recall: 0.8954 - F1: 0.8873 - Accuracy: 0.9776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1882 | 1.0 | 878 | 0.1169 | 0.8557 | 0.8798 | 0.8676 | 0.9744 | | 0.0376 | 2.0 | 1756 | 0.1160 | 0.8811 | 0.8962 | 0.8886 | 0.9779 | | 0.0202 | 3.0 | 2634 | 0.1230 | 0.8793 | 0.8954 | 0.8873 | 0.9776 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3