File size: 21,064 Bytes
fa2c349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
#!/usr/bin/env python
import argparse
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.amp import autocast, GradScaler
from datasets import load_dataset
from transformers import AutoTokenizer
# Set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def parse_args():
parser = argparse.ArgumentParser(description='Train Transformer model with advanced features.')
parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
parser.add_argument('--batch_size', type=int, default=8, help='Batch size')
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
args = parser.parse_args()
return args
def load_data(args, tokenizer):
# Load the dataset
dataset = load_dataset(args.dataset_name, args.dataset_config)
# Ensure the tokenizer has a padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=args.max_length)
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
num_proc=4,
remove_columns=dataset['train'].column_names,
)
# Build inputs and labels for language modeling
block_size = args.max_length
def group_texts(examples):
# Concatenate all texts
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples['input_ids'])
# We drop the small remainder
total_length = (total_length // block_size) * block_size
# Split by chunks of block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result['labels'] = result['input_ids'].copy()
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=4,
)
# Create DataLoader
train_dataset = lm_datasets['train']
eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']
data_collator = lambda data: {
'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
}
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=data_collator)
eval_loader = DataLoader(eval_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator)
return train_loader, eval_loader
class RotaryPositionalEncoding(nn.Module):
def __init__(self, d_model):
super(RotaryPositionalEncoding, self).__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
seq_len, batch_size, _ = x.size()
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
sin = sinusoid_inp.sin().unsqueeze(1) # (seq_len, 1, d_model/2)
cos = sinusoid_inp.cos().unsqueeze(1) # (seq_len, 1, d_model/2)
x1 = x[..., 0::2]
x2 = x[..., 1::2]
# Apply rotation
x_rotated = torch.zeros_like(x)
x_rotated[..., 0::2] = x1 * cos - x2 * sin
x_rotated[..., 1::2] = x1 * sin + x2 * cos
return x_rotated
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_k = d_model // num_heads
self.num_heads = num_heads
self.linear_q = nn.Linear(d_model, d_model)
self.linear_k = nn.Linear(d_model, d_model)
self.linear_v = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
attn = F.softmax(scores, dim=-1)
output = torch.matmul(attn, value)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
return self.linear_out(output)
class MoE(nn.Module):
def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
super(MoE, self).__init__()
self.num_experts = num_experts
self.top_k = top_k
self.experts = nn.ModuleList([
nn.Sequential(
nn.Linear(d_model, d_ff),
nn.GELU() if i % 2 == 0 else nn.SiLU(),
nn.Linear(d_ff, d_model)
)
for i in range(num_experts)
])
self.gate = nn.Linear(d_model, num_experts)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
batch_size, seq_len, d_model = x.size()
# Compute gating scores
gate_scores = self.gate(x) # (batch_size, seq_len, num_experts)
top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1) # (batch_size, seq_len, top_k)
top_k_scores = F.softmax(top_k_scores, dim=-1) # (batch_size, seq_len, top_k)
# Initialize output
output = torch.zeros_like(x)
# Flatten batch and sequence dimensions
x_flat = x.view(-1, d_model) # (batch_size * seq_len, d_model)
output_flat = output.view(-1, d_model)
top_k_indices_flat = top_k_indices.view(-1, self.top_k) # (batch_size * seq_len, top_k)
top_k_scores_flat = top_k_scores.view(-1, self.top_k) # (batch_size * seq_len, top_k)
for k in range(self.top_k):
expert_idx_flat = top_k_indices_flat[:, k] # (batch_size * seq_len)
expert_scores_flat = top_k_scores_flat[:, k] # (batch_size * seq_len)
for e in range(self.num_experts):
mask = (expert_idx_flat == e) # Boolean mask
if mask.any():
x_masked = x_flat[mask] # Select tokens for expert e
expert_output = self.experts[e](x_masked) # Apply expert e
output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output
output = output_flat.view(batch_size, seq_len, d_model)
return self.dropout(output)
class TransformerBlock(nn.Module):
def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
super(TransformerBlock, self).__init__()
self.self_attention = MultiHeadAttention(d_model, num_heads)
self.norm1 = nn.LayerNorm(d_model)
self.cross_attention = MultiHeadAttention(d_model, num_heads)
self.norm2 = nn.LayerNorm(d_model)
self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
self.norm3 = nn.LayerNorm(d_model)
def forward(self, x, mask=None, enc_output=None, enc_mask=None):
# Self-attention
attn_output = self.self_attention(x, x, x, mask)
x = self.norm1(x + attn_output)
# Cross-attention (only in decoder)
if enc_output is not None:
cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
x = self.norm2(x + cross_attn_output)
# Feedforward/MoE
moe_output = self.moe(x)
return self.norm3(x + moe_output)
class Transformer(nn.Module):
def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
self.encoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.decoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.output_layer = nn.Linear(d_model, output_dim)
self.d_model = d_model
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
# Encoder
src = self.embedding(src) * math.sqrt(self.d_model)
src = src.transpose(0, 1) # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
src = self.rotary_positional_encoding(src)
src = src.transpose(0, 1) # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model)
for layer in self.encoder_layers:
src = layer(src, src_mask)
# Decoder
tgt = self.embedding(tgt) * math.sqrt(self.d_model)
tgt = tgt.transpose(0, 1)
tgt = self.rotary_positional_encoding(tgt)
tgt = tgt.transpose(0, 1)
for layer in self.decoder_layers:
tgt = layer(tgt, tgt_mask, src, src_mask)
output = self.output_layer(tgt)
return output
def generate(self, src, tokenizer, max_length=20, temperature=1.0):
"""
Generate sequences using differentiable sampling (Gumbel-Softmax).
Args:
src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)
tokenizer (transformers.PreTrainedTokenizer): Tokenizer to access special tokens
max_length (int): Maximum length of the generated sequence
temperature (float): Temperature parameter for Gumbel-Softmax
Returns:
torch.Tensor: Generated sequences of shape (batch_size, max_length)
torch.Tensor: Entropy values for each time step
torch.Tensor: Variance values for each time step
"""
batch_size = src.size(0)
# Encode the source
src_enc = self.embedding(src) * math.sqrt(self.d_model)
src_enc = src_enc.transpose(0, 1)
src_enc = self.rotary_positional_encoding(src_enc)
src_enc = src_enc.transpose(0, 1)
for layer in self.encoder_layers:
src_enc = layer(src_enc)
# Initialize decoder input with <sos> tokens
tgt_seq = torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=src.device)
entropies = []
variances = []
for _ in range(max_length):
tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_emb = self.rotary_positional_encoding(tgt_emb)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_dec = tgt_emb
for layer in self.decoder_layers:
tgt_dec = layer(tgt_dec, None, src_enc, None)
output = self.output_layer(tgt_dec) # (batch_size, seq_len, vocab_size)
logits = output[:, -1, :] # Get logits for the last time step
# Compute token probabilities
probs = F.softmax(logits / temperature, dim=-1) # (batch_size, vocab_size)
# Compute entropy
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size)
entropies.append(entropy)
# Sample token using Gumbel-Softmax
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + 1e-9) + 1e-9)
y = (logits + gumbel_noise) / temperature
y = F.softmax(y, dim=-1) # (batch_size, vocab_size)
# Compute variance
variance = torch.var(y, dim=-1) # (batch_size)
variances.append(variance)
# Get token indices (argmax for hard selection)
next_tokens = torch.argmax(y, dim=-1, keepdim=True) # (batch_size, 1)
tgt_seq = torch.cat([tgt_seq, next_tokens], dim=1)
# Stack entropies and variances
entropies = torch.stack(entropies, dim=1) # (batch_size, max_length)
variances = torch.stack(variances, dim=1) # (batch_size, max_length)
return tgt_seq[:, 1:], entropies, variances # Exclude the initial <sos> token
def compute_loss(output, target, padding_idx, alpha=0.1, beta=0.1, temperature=1.0):
"""
Compute the loss with entropy and variance regularization.
Args:
output (torch.Tensor): Model output logits of shape (batch_size, seq_len, vocab_size)
target (torch.Tensor): Target sequences of shape (batch_size, seq_len)
padding_idx (int): Padding index to ignore in the loss
alpha (float): Weight for the entropy regularization term
beta (float): Weight for the variance regularization term
temperature (float): Temperature parameter for computing probabilities
Returns:
torch.Tensor: Scalar loss value
"""
# Cross-entropy loss
output_flat = output.contiguous().view(-1, output.size(-1))
target_flat = target.contiguous().view(-1)
ce_loss = F.cross_entropy(
output_flat,
target_flat,
ignore_index=padding_idx
)
# Compute probabilities
probs = F.softmax(output / temperature, dim=-1) # (batch_size, seq_len, vocab_size)
# Compute entropy
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size, seq_len)
entropy_loss = -alpha * torch.mean(entropy)
# Compute variance
variance = torch.var(probs, dim=-1) # (batch_size, seq_len)
variance_loss = -beta * torch.mean(variance)
# Total loss
total_loss = ce_loss + entropy_loss + variance_loss
return total_loss
def train_epoch(model, train_loader, optimizer, scheduler, scaler, args, padding_idx):
model.train()
total_loss = 0.0
optimizer.zero_grad()
print(f"Starting training epoch with {len(train_loader)} batches...")
for i, batch in enumerate(train_loader):
print(f"Processing batch {i+1}/{len(train_loader)}...")
src_batch = batch['input_ids'].to(device)
tgt_batch = batch['labels'].to(device)
with autocast(device_type='cuda'):
print("Forward pass...")
output = model(src_batch, tgt_batch[:, :-1])
print("Computing loss...")
loss = compute_loss(
output,
tgt_batch[:, 1:],
padding_idx,
alpha=args.alpha,
beta=args.beta,
temperature=args.temperature
)
loss = loss / args.accumulation_steps
print("Backward pass...")
scaler.scale(loss).backward()
if (i + 1) % args.accumulation_steps == 0:
print("Gradient clipping...")
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
print("Optimizer step...")
scaler.step(optimizer)
scaler.update()
print("Zeroing gradients...")
optimizer.zero_grad()
print("Updating learning rate...")
scheduler.step()
total_loss += loss.item() * args.accumulation_steps
print(f"Batch {i+1} completed. Current loss: {loss.item():.4f}")
avg_loss = total_loss / len(train_loader)
print(f"Epoch completed. Average loss: {avg_loss:.4f}")
return avg_loss
def evaluate(model, eval_loader, args, padding_idx):
model.eval()
total_loss = 0.0
with torch.no_grad():
for batch in eval_loader:
src_batch = batch['input_ids'].to(device)
tgt_batch = batch['labels'].to(device)
with autocast(device_type='cuda'):
# Forward pass
output = model(src_batch, tgt_batch[:, :-1])
# Compute loss
loss = compute_loss(
output,
tgt_batch[:, 1:],
padding_idx,
alpha=args.alpha,
beta=args.beta,
temperature=args.temperature
)
total_loss += loss.item()
avg_loss = total_loss / len(eval_loader)
return avg_loss
def main():
args = parse_args()
print("Arguments parsed successfully.")
# Create save directory
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print(f"Save directory created: {args.save_dir}")
# Load tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded successfully.")
# Load data
print("Loading and preprocessing data...")
train_loader, eval_loader = load_data(args, tokenizer)
print("Data loaded and preprocessed successfully.")
# Define model parameters
input_dim = len(tokenizer)
d_model = 512
num_heads = 8
num_layers = 6
d_ff = 2048
num_experts = 4
output_dim = input_dim
dropout = 0.1
top_k = 2
print("Initializing model...")
model = Transformer(
input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout, top_k
)
model = model.to(device)
print(f"Model initialized and moved to device: {device}")
padding_idx = tokenizer.pad_token_id
print("Setting up optimizer and scheduler...")
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
scaler = GradScaler()
print("Optimizer and scheduler set up successfully.")
print("Starting training loop...")
for epoch in range(args.num_epochs):
print(f"Epoch {epoch + 1}/{args.num_epochs} started.")
avg_train_loss = train_epoch(
model,
train_loader,
optimizer,
scheduler,
scaler,
args,
padding_idx
)
print(f"Epoch {epoch + 1}/{args.num_epochs} training completed.")
print(f"Starting evaluation for epoch {epoch + 1}...")
avg_eval_loss = evaluate(model, eval_loader, args, padding_idx)
print(f"Evaluation for epoch {epoch + 1} completed.")
print(f"Epoch {epoch + 1}/{args.num_epochs}, Train Loss: {avg_train_loss:.4f}, Eval Loss: {avg_eval_loss:.4f}")
model_save_path = os.path.join(args.save_dir, f"model_epoch_{epoch + 1}.pt")
torch.save(model.state_dict(), model_save_path)
print(f"Model saved for epoch {epoch + 1}")
print("Training completed.")
if __name__ == '__main__':
main()
'''
Example usage:
python lightbulb.py --model_name gpt2 --dataset_name wikitext --dataset_config wikitext-2-raw-v1 --batch_size 8 --num_epochs 3
'''
|