File size: 21,064 Bytes
fa2c349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
#!/usr/bin/env python

import argparse
import math
import os

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader

from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.amp import autocast, GradScaler
from datasets import load_dataset
from transformers import AutoTokenizer

# Set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


def parse_args():
    parser = argparse.ArgumentParser(description='Train Transformer model with advanced features.')
    parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
    parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
    parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
    parser.add_argument('--batch_size', type=int, default=8, help='Batch size')
    parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
    parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
    parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
    parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
    parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
    parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
    parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
    parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
    parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
    parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
    args = parser.parse_args()
    return args


def load_data(args, tokenizer):
    # Load the dataset
    dataset = load_dataset(args.dataset_name, args.dataset_config)
    
    # Ensure the tokenizer has a padding token
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    def tokenize_function(examples):
        return tokenizer(examples['text'], truncation=True, max_length=args.max_length)

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=4,
        remove_columns=dataset['train'].column_names,
    )

    # Build inputs and labels for language modeling
    block_size = args.max_length

    def group_texts(examples):
        # Concatenate all texts
        concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
        total_length = len(concatenated_examples['input_ids'])
        # We drop the small remainder
        total_length = (total_length // block_size) * block_size
        # Split by chunks of block_size
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result['labels'] = result['input_ids'].copy()
        return result

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=4,
    )

    # Create DataLoader
    train_dataset = lm_datasets['train']
    eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']

    data_collator = lambda data: {
        'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
        'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
    }

    train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=data_collator)
    eval_loader = DataLoader(eval_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator)

    return train_loader, eval_loader


class RotaryPositionalEncoding(nn.Module):
    def __init__(self, d_model):
        super(RotaryPositionalEncoding, self).__init__()
        inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, x):
        seq_len, batch_size, _ = x.size()
        t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
        sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
        sin = sinusoid_inp.sin().unsqueeze(1)  # (seq_len, 1, d_model/2)
        cos = sinusoid_inp.cos().unsqueeze(1)  # (seq_len, 1, d_model/2)

        x1 = x[..., 0::2]
        x2 = x[..., 1::2]

        # Apply rotation
        x_rotated = torch.zeros_like(x)
        x_rotated[..., 0::2] = x1 * cos - x2 * sin
        x_rotated[..., 1::2] = x1 * sin + x2 * cos

        return x_rotated


class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
        self.d_k = d_model // num_heads
        self.num_heads = num_heads
        self.linear_q = nn.Linear(d_model, d_model)
        self.linear_k = nn.Linear(d_model, d_model)
        self.linear_v = nn.Linear(d_model, d_model)
        self.linear_out = nn.Linear(d_model, d_model)
    
    def forward(self, query, key, value, mask=None):
        batch_size = query.size(0)
        query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        
        scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e9)
        attn = F.softmax(scores, dim=-1)
        output = torch.matmul(attn, value)
        
        output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
        return self.linear_out(output)


class MoE(nn.Module):
    def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
        super(MoE, self).__init__()
        self.num_experts = num_experts
        self.top_k = top_k
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(d_model, d_ff),
                nn.GELU() if i % 2 == 0 else nn.SiLU(),
                nn.Linear(d_ff, d_model)
            )
            for i in range(num_experts)
        ])
        self.gate = nn.Linear(d_model, num_experts)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        batch_size, seq_len, d_model = x.size()
        # Compute gating scores
        gate_scores = self.gate(x)  # (batch_size, seq_len, num_experts)
        top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1)  # (batch_size, seq_len, top_k)
        top_k_scores = F.softmax(top_k_scores, dim=-1)  # (batch_size, seq_len, top_k)

        # Initialize output
        output = torch.zeros_like(x)

        # Flatten batch and sequence dimensions
        x_flat = x.view(-1, d_model)  # (batch_size * seq_len, d_model)
        output_flat = output.view(-1, d_model)
        top_k_indices_flat = top_k_indices.view(-1, self.top_k)  # (batch_size * seq_len, top_k)
        top_k_scores_flat = top_k_scores.view(-1, self.top_k)  # (batch_size * seq_len, top_k)

        for k in range(self.top_k):
            expert_idx_flat = top_k_indices_flat[:, k]  # (batch_size * seq_len)
            expert_scores_flat = top_k_scores_flat[:, k]  # (batch_size * seq_len)
            for e in range(self.num_experts):
                mask = (expert_idx_flat == e)  # Boolean mask
                if mask.any():
                    x_masked = x_flat[mask]  # Select tokens for expert e
                    expert_output = self.experts[e](x_masked)  # Apply expert e
                    output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output

        output = output_flat.view(batch_size, seq_len, d_model)
        return self.dropout(output)


class TransformerBlock(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
        super(TransformerBlock, self).__init__()
        self.self_attention = MultiHeadAttention(d_model, num_heads)
        self.norm1 = nn.LayerNorm(d_model)
        self.cross_attention = MultiHeadAttention(d_model, num_heads)
        self.norm2 = nn.LayerNorm(d_model)
        self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
        self.norm3 = nn.LayerNorm(d_model)

    def forward(self, x, mask=None, enc_output=None, enc_mask=None):
        # Self-attention
        attn_output = self.self_attention(x, x, x, mask)
        x = self.norm1(x + attn_output)
        # Cross-attention (only in decoder)
        if enc_output is not None:
            cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
            x = self.norm2(x + cross_attn_output)
        # Feedforward/MoE
        moe_output = self.moe(x)
        return self.norm3(x + moe_output)


class Transformer(nn.Module):
    def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
        super(Transformer, self).__init__()
        self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
        self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
        self.encoder_layers = nn.ModuleList(
            [TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
        )
        self.decoder_layers = nn.ModuleList(
            [TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
        )
        self.output_layer = nn.Linear(d_model, output_dim)
        self.d_model = d_model

    def forward(self, src, tgt, src_mask=None, tgt_mask=None):
        # Encoder
        src = self.embedding(src) * math.sqrt(self.d_model)
        src = src.transpose(0, 1)  # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
        src = self.rotary_positional_encoding(src)
        src = src.transpose(0, 1)  # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model)
        for layer in self.encoder_layers:
            src = layer(src, src_mask)

        # Decoder
        tgt = self.embedding(tgt) * math.sqrt(self.d_model)
        tgt = tgt.transpose(0, 1)
        tgt = self.rotary_positional_encoding(tgt)
        tgt = tgt.transpose(0, 1)
        for layer in self.decoder_layers:
            tgt = layer(tgt, tgt_mask, src, src_mask)
        output = self.output_layer(tgt)
        return output

    def generate(self, src, tokenizer, max_length=20, temperature=1.0):
        """

        Generate sequences using differentiable sampling (Gumbel-Softmax).



        Args:

            src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)

            tokenizer (transformers.PreTrainedTokenizer): Tokenizer to access special tokens

            max_length (int): Maximum length of the generated sequence

            temperature (float): Temperature parameter for Gumbel-Softmax



        Returns:

            torch.Tensor: Generated sequences of shape (batch_size, max_length)

            torch.Tensor: Entropy values for each time step

            torch.Tensor: Variance values for each time step

        """
        batch_size = src.size(0)

        # Encode the source
        src_enc = self.embedding(src) * math.sqrt(self.d_model)
        src_enc = src_enc.transpose(0, 1)
        src_enc = self.rotary_positional_encoding(src_enc)
        src_enc = src_enc.transpose(0, 1)
        for layer in self.encoder_layers:
            src_enc = layer(src_enc)

        # Initialize decoder input with <sos> tokens
        tgt_seq = torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=src.device)
        entropies = []
        variances = []

        for _ in range(max_length):
            tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
            tgt_emb = tgt_emb.transpose(0, 1)
            tgt_emb = self.rotary_positional_encoding(tgt_emb)
            tgt_emb = tgt_emb.transpose(0, 1)
            tgt_dec = tgt_emb
            for layer in self.decoder_layers:
                tgt_dec = layer(tgt_dec, None, src_enc, None)
            output = self.output_layer(tgt_dec)  # (batch_size, seq_len, vocab_size)
            logits = output[:, -1, :]  # Get logits for the last time step

            # Compute token probabilities
            probs = F.softmax(logits / temperature, dim=-1)  # (batch_size, vocab_size)

            # Compute entropy
            entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)  # (batch_size)
            entropies.append(entropy)

            # Sample token using Gumbel-Softmax
            gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + 1e-9) + 1e-9)
            y = (logits + gumbel_noise) / temperature
            y = F.softmax(y, dim=-1)  # (batch_size, vocab_size)

            # Compute variance
            variance = torch.var(y, dim=-1)  # (batch_size)
            variances.append(variance)

            # Get token indices (argmax for hard selection)
            next_tokens = torch.argmax(y, dim=-1, keepdim=True)  # (batch_size, 1)
            tgt_seq = torch.cat([tgt_seq, next_tokens], dim=1)

        # Stack entropies and variances
        entropies = torch.stack(entropies, dim=1)  # (batch_size, max_length)
        variances = torch.stack(variances, dim=1)  # (batch_size, max_length)

        return tgt_seq[:, 1:], entropies, variances  # Exclude the initial <sos> token


def compute_loss(output, target, padding_idx, alpha=0.1, beta=0.1, temperature=1.0):
    """

    Compute the loss with entropy and variance regularization.



    Args:

        output (torch.Tensor): Model output logits of shape (batch_size, seq_len, vocab_size)

        target (torch.Tensor): Target sequences of shape (batch_size, seq_len)

        padding_idx (int): Padding index to ignore in the loss

        alpha (float): Weight for the entropy regularization term

        beta (float): Weight for the variance regularization term

        temperature (float): Temperature parameter for computing probabilities



    Returns:

        torch.Tensor: Scalar loss value

    """
    # Cross-entropy loss
    output_flat = output.contiguous().view(-1, output.size(-1))
    target_flat = target.contiguous().view(-1)
    ce_loss = F.cross_entropy(
        output_flat,
        target_flat,
        ignore_index=padding_idx
    )

    # Compute probabilities
    probs = F.softmax(output / temperature, dim=-1)  # (batch_size, seq_len, vocab_size)

    # Compute entropy
    entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)  # (batch_size, seq_len)
    entropy_loss = -alpha * torch.mean(entropy)

    # Compute variance
    variance = torch.var(probs, dim=-1)  # (batch_size, seq_len)
    variance_loss = -beta * torch.mean(variance)

    # Total loss
    total_loss = ce_loss + entropy_loss + variance_loss
    return total_loss


def train_epoch(model, train_loader, optimizer, scheduler, scaler, args, padding_idx):
    model.train()
    total_loss = 0.0
    optimizer.zero_grad()
    print(f"Starting training epoch with {len(train_loader)} batches...")
    for i, batch in enumerate(train_loader):
        print(f"Processing batch {i+1}/{len(train_loader)}...")
        src_batch = batch['input_ids'].to(device)
        tgt_batch = batch['labels'].to(device)

        with autocast(device_type='cuda'):
            print("Forward pass...")
            output = model(src_batch, tgt_batch[:, :-1])
            print("Computing loss...")
            loss = compute_loss(
                output, 
                tgt_batch[:, 1:], 
                padding_idx, 
                alpha=args.alpha, 
                beta=args.beta, 
                temperature=args.temperature
            )
            loss = loss / args.accumulation_steps

        print("Backward pass...")
        scaler.scale(loss).backward()

        if (i + 1) % args.accumulation_steps == 0:
            print("Gradient clipping...")
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            print("Optimizer step...")
            scaler.step(optimizer)
            scaler.update()

            print("Zeroing gradients...")
            optimizer.zero_grad()

            print("Updating learning rate...")
            scheduler.step()

        total_loss += loss.item() * args.accumulation_steps
        print(f"Batch {i+1} completed. Current loss: {loss.item():.4f}")

    avg_loss = total_loss / len(train_loader)
    print(f"Epoch completed. Average loss: {avg_loss:.4f}")
    return avg_loss


def evaluate(model, eval_loader, args, padding_idx):
    model.eval()
    total_loss = 0.0
    with torch.no_grad():
        for batch in eval_loader:
            src_batch = batch['input_ids'].to(device)
            tgt_batch = batch['labels'].to(device)

            with autocast(device_type='cuda'):
                # Forward pass
                output = model(src_batch, tgt_batch[:, :-1])
                # Compute loss
                loss = compute_loss(
                    output, 
                    tgt_batch[:, 1:], 
                    padding_idx, 
                    alpha=args.alpha, 
                    beta=args.beta, 
                    temperature=args.temperature
                )

            total_loss += loss.item()

    avg_loss = total_loss / len(eval_loader)
    return avg_loss


def main():
    args = parse_args()
    print("Arguments parsed successfully.")

    # Create save directory
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    print(f"Save directory created: {args.save_dir}")

    # Load tokenizer
    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    print("Tokenizer loaded successfully.")

    # Load data
    print("Loading and preprocessing data...")
    train_loader, eval_loader = load_data(args, tokenizer)
    print("Data loaded and preprocessed successfully.")

    # Define model parameters
    input_dim = len(tokenizer)
    d_model = 512
    num_heads = 8
    num_layers = 6
    d_ff = 2048
    num_experts = 4
    output_dim = input_dim
    dropout = 0.1
    top_k = 2

    print("Initializing model...")
    model = Transformer(
        input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout, top_k
    )
    model = model.to(device)
    print(f"Model initialized and moved to device: {device}")

    padding_idx = tokenizer.pad_token_id

    print("Setting up optimizer and scheduler...")
    optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
    scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
    scaler = GradScaler()
    print("Optimizer and scheduler set up successfully.")

    print("Starting training loop...")
    for epoch in range(args.num_epochs):
        print(f"Epoch {epoch + 1}/{args.num_epochs} started.")
        avg_train_loss = train_epoch(
            model, 
            train_loader, 
            optimizer, 
            scheduler, 
            scaler, 
            args, 
            padding_idx
        )
        print(f"Epoch {epoch + 1}/{args.num_epochs} training completed.")
        
        print(f"Starting evaluation for epoch {epoch + 1}...")
        avg_eval_loss = evaluate(model, eval_loader, args, padding_idx)
        print(f"Evaluation for epoch {epoch + 1} completed.")
        
        print(f"Epoch {epoch + 1}/{args.num_epochs}, Train Loss: {avg_train_loss:.4f}, Eval Loss: {avg_eval_loss:.4f}")

        model_save_path = os.path.join(args.save_dir, f"model_epoch_{epoch + 1}.pt")
        torch.save(model.state_dict(), model_save_path)
        print(f"Model saved for epoch {epoch + 1}")

    print("Training completed.")


if __name__ == '__main__':
    main()


'''

Example usage:

python lightbulb.py --model_name gpt2 --dataset_name wikitext --dataset_config wikitext-2-raw-v1 --batch_size 8 --num_epochs 3

'''