File size: 80,360 Bytes
5712fda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
import argparse
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import copy
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.cuda.amp import autocast, GradScaler
from datasets import load_dataset
from transformers import AutoTokenizer
from typing import List, Tuple

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def parse_args():
    parser = argparse.ArgumentParser(description='Train or Inference with World Model and Tree of Thought.')
    parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
    parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
    parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
    parser.add_argument('--batch_size', type=int, default=4, help='Batch size')
    parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
    parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
    parser.add_argument('--mcts_iterations', type=int, default=3, help='Number of MCTS Iterations')
    parser.add_argument('--mcts_exploration_constant', type=float, default=1.414, help='Exploration constant for MCTS')
    parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
    parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
    parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
    parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
    parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
    parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
    parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
    parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
    parser.add_argument('--mode', type=str, choices=['train', 'inference'], default='inference', help='Mode: train or inference')
    parser.add_argument('--inference_mode', type=str, choices=['world_model', 'without_world_model', 'world_model_tree_of_thought'], default='world_model_tree_of_thought', help='Inference mode')
    parser.add_argument('--query', type=str, default='', help='Input query for inference')
    parser.add_argument('--train_mode', type=str, choices=['world_model', 'language_model'], default='world_model', help='Train world model or language model only')
    parser.add_argument('--beam_size', type=int, default=5, help='Beam size for beam search')
    parser.add_argument('--n_tokens_predict', type=int, default=3, help='Number of tokens to predict at each step')
    parser.add_argument('--load_model', type=str, default=None, 
                        help='Path to load saved model. If not provided, a new model will be initialized.')


    # Use parse_known_args to ignore unknown arguments
    args, unknown = parser.parse_known_args()
    return args

def load_data(args, tokenizer):
    # Load the dataset
    dataset = load_dataset(args.dataset_name, args.dataset_config)

    # Ensure the tokenizer has a padding token
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token

    def tokenize_function(examples):
        return tokenizer(examples['text'], truncation=True, max_length=args.max_length)

    tokenized_datasets = dataset.map(
        tokenize_function,
        batched=True,
        num_proc=4,
        remove_columns=dataset['train'].column_names,
    )

    # Build inputs and labels for language modeling
    block_size = args.max_length

    def group_texts(examples):
        # Concatenate all texts
        concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
        total_length = len(concatenated_examples['input_ids'])
        # We drop the small remainder
        total_length = (total_length // block_size) * block_size
        # Split by chunks of block_size
        result = {
            k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
            for k, t in concatenated_examples.items()
        }
        result['labels'] = result['input_ids'].copy()
        return result

    lm_datasets = tokenized_datasets.map(
        group_texts,
        batched=True,
        num_proc=4,
    )

    # Create DataLoader
    train_dataset = lm_datasets['train']
    eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']

    def data_collator(data):
        return {
            'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
            'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
        }

    train_loader = DataLoader(
        train_dataset,
        shuffle=True,
        batch_size=args.batch_size,
        collate_fn=data_collator,
        pin_memory=True,  # Speeds up transfer to GPU
        num_workers=4
    )
    eval_loader = DataLoader(
        eval_dataset,
        shuffle=False,
        batch_size=args.batch_size,
        collate_fn=data_collator,
        pin_memory=True,
        num_workers=4
    )

    return train_loader, eval_loader

def save_all_models(transformer_model, representation_network, dynamics_network, prediction_network, action_encoder, save_dir, epoch):
    """

    Save all models to the specified directory.



    Args:

        transformer_model (nn.Module): Transformer model.

        representation_network (nn.Module): Representation network.

        dynamics_network (nn.Module): Dynamics network.

        prediction_network (nn.Module): Prediction network.

        action_encoder (nn.Module): Action encoder.

        save_dir (str): Directory to save the models.

        epoch (int): Current epoch number.

    """
    os.makedirs(save_dir, exist_ok=True)

    torch.save(transformer_model.state_dict(), os.path.join(save_dir, f'transformer_model_epoch_{epoch}.pt'))
    torch.save(representation_network.state_dict(), os.path.join(save_dir, f'representation_network_epoch_{epoch}.pt'))
    torch.save(dynamics_network.state_dict(), os.path.join(save_dir, f'dynamics_network_epoch_{epoch}.pt'))
    torch.save(prediction_network.state_dict(), os.path.join(save_dir, f'prediction_network_epoch_{epoch}.pt'))
    torch.save(action_encoder.state_dict(), os.path.join(save_dir, f'action_encoder_epoch_{epoch}.pt'))

    print(f"All models saved for epoch {epoch}.")

class RotaryPositionalEncoding(nn.Module):
    def __init__(self, d_model):
        super(RotaryPositionalEncoding, self).__init__()
        inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, x):
        seq_len, batch_size, _ = x.size()
        t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
        sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
        sin = sinusoid_inp.sin().unsqueeze(1)  # (seq_len, 1, d_model/2)
        cos = sinusoid_inp.cos().unsqueeze(1)  # (seq_len, 1, d_model/2)

        x1 = x[..., 0::2]
        x2 = x[..., 1::2]

        # Apply rotation
        x_rotated = torch.zeros_like(x)
        x_rotated[..., 0::2] = x1 * cos - x2 * sin
        x_rotated[..., 1::2] = x1 * sin + x2 * cos

        return x_rotated

class MultiHeadAttention(nn.Module):
    def __init__(self, d_model, num_heads):
        super(MultiHeadAttention, self).__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
        self.d_k = d_model // num_heads
        self.num_heads = num_heads
        self.linear_q = nn.Linear(d_model, d_model)
        self.linear_k = nn.Linear(d_model, d_model)
        self.linear_v = nn.Linear(d_model, d_model)
        self.linear_out = nn.Linear(d_model, d_model)

    def forward(self, query, key, value, mask=None):
        batch_size = query.size(0)
        query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)

        scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            scores = scores.masked_fill(mask == 0, -1e4)
        attn = F.softmax(scores, dim=-1)
        output = torch.matmul(attn, value)

        output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
        return self.linear_out(output)

class MoE(nn.Module):
    def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
        super(MoE, self).__init__()
        self.num_experts = num_experts
        self.top_k = top_k
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(d_model, d_ff),
                nn.GELU() if i % 2 == 0 else nn.SiLU(),
                nn.Linear(d_ff, d_model)
            )
            for i in range(num_experts)
        ])
        self.gate = nn.Linear(d_model, num_experts)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        batch_size, seq_len, d_model = x.size()
        # Compute gating scores
        gate_scores = self.gate(x)  # (batch_size, seq_len, num_experts)
        top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1)  # (batch_size, seq_len, top_k)
        top_k_scores = F.softmax(top_k_scores, dim=-1)  # (batch_size, seq_len, top_k)

        # Initialize output
        output = torch.zeros_like(x)

        # Flatten batch and sequence dimensions
        x_flat = x.view(-1, d_model)  # (batch_size * seq_len, d_model)
        output_flat = output.view(-1, d_model)
        top_k_indices_flat = top_k_indices.view(-1, self.top_k)  # (batch_size * seq_len, top_k)
        top_k_scores_flat = top_k_scores.view(-1, self.top_k)  # (batch_size * seq_len, top_k)

        for k in range(self.top_k):
            expert_idx_flat = top_k_indices_flat[:, k]  # (batch_size * seq_len)
            expert_scores_flat = top_k_scores_flat[:, k]  # (batch_size * seq_len)
            for e in range(self.num_experts):
                mask = (expert_idx_flat == e)  # Boolean mask
                if mask.any():
                    x_masked = x_flat[mask]  # Select tokens for expert e
                    expert_output = self.experts[e](x_masked)  # Apply expert e
                    output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output

        output = output_flat.view(batch_size, seq_len, d_model)
        return self.dropout(output)

class TransformerBlock(nn.Module):
    def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
        super(TransformerBlock, self).__init__()
        self.self_attention = MultiHeadAttention(d_model, num_heads)
        self.norm1 = nn.LayerNorm(d_model)
        self.cross_attention = MultiHeadAttention(d_model, num_heads)
        self.norm2 = nn.LayerNorm(d_model)
        self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
        self.norm3 = nn.LayerNorm(d_model)

    def forward(self, x, mask=None, enc_output=None, enc_mask=None):
        # Self-attention
        attn_output = self.self_attention(x, x, x, mask)
        x = self.norm1(x + attn_output)
        # Cross-attention (only in decoder)
        if enc_output is not None:
            cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
            x = self.norm2(x + cross_attn_output)
        # Feedforward/MoE
        moe_output = self.moe(x)
        return self.norm3(x + moe_output)

class Transformer(nn.Module):
    def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
        super(Transformer, self).__init__()
        self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
        self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
        self.encoder_layers = nn.ModuleList(
            [TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
        )
        self.decoder_layers = nn.ModuleList(
            [TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
        )
        self.output_layer = nn.Linear(d_model, output_dim)
        self.d_model = d_model

    def forward(self, src, tgt, src_mask=None, tgt_mask=None):
        # Encoder
        src = self.embedding(src) * math.sqrt(self.d_model)
        src = src.transpose(0, 1)  # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
        src = self.rotary_positional_encoding(src)
        src = src.transpose(0, 1)  # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model)
        for layer in self.encoder_layers:
            src = layer(src, src_mask)

        # Decoder
        tgt = self.embedding(tgt) * math.sqrt(self.d_model)
        tgt = tgt.transpose(0, 1)
        tgt = self.rotary_positional_encoding(tgt)
        tgt = tgt.transpose(0, 1)
        for layer in self.decoder_layers:
            tgt = layer(tgt, tgt_mask, src, src_mask)
        output = self.output_layer(tgt)
        return output

    def generate_with_beam_search(self, src, tokenizer, beam_size=5, max_length=20, n_tokens_predict=3, temperature=1.0):
        """

        Generate sequences using beam search with multi-token prediction.

        

        Args:

            src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)

            tokenizer: Tokenizer to access special tokens

            beam_size (int): Size of the beam for beam search

            max_length (int): Maximum length of the generated sequence

            n_tokens_predict (int): Number of tokens to predict at each step

            temperature (float): Temperature parameter for softmax

        

        Returns:

            List[Tuple[torch.Tensor, float]]: List of (sequence, score) tuples

        """
        batch_size = src.size(0)
        device = src.device
        vocab_size = self.output_layer.out_features

        # Encode the source
        src_enc = self.encode(src)

        # Initialize beam
        beam = [(torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=device),
                 0.0,  # log probability
                 torch.zeros(batch_size, device=device),  # cumulative entropy
                 torch.zeros(batch_size, device=device))]  # cumulative variance

        for _ in range(max_length // n_tokens_predict):
            all_candidates = []
            for seq, score, cum_entropy, cum_variance in beam:
                if seq[:, -1].item() == tokenizer.eos_token_id:
                    all_candidates.append((seq, score, cum_entropy, cum_variance))
                    continue

                # Predict next n tokens
                logits = self.predict_next_n_tokens(src_enc, seq, n_tokens_predict)
                
                # Calculate probabilities, entropy, and variance
                probs = F.softmax(logits / temperature, dim=-1)
                entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
                variance = torch.var(probs, dim=-1)

                # Sample top-k tokens for each position
                topk_probs, topk_indices = torch.topk(probs, k=beam_size, dim=-1)
                
                # Generate all possible continuations
                for i in range(beam_size ** n_tokens_predict):
                    indices = [i // (beam_size ** j) % beam_size for j in range(n_tokens_predict)]
                    new_tokens = topk_indices[:, range(n_tokens_predict), indices]
                    new_seq = torch.cat([seq, new_tokens], dim=-1)
                    new_score = score + torch.sum(torch.log(topk_probs[:, range(n_tokens_predict), indices]))
                    new_entropy = cum_entropy + torch.sum(entropy[:, indices])
                    new_variance = cum_variance + torch.sum(variance[:, indices])
                    
                    all_candidates.append((new_seq, new_score, new_entropy, new_variance))

            # Select top beam_size candidates
            beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:beam_size]

            # Stop if all beams have ended
            if all(seq[:, -1].item() == tokenizer.eos_token_id for seq, _, _, _ in beam):
                break

        return [(seq, score) for seq, score, _, _ in beam]

    def encode(self, src):
        src_emb = self.embedding(src) * math.sqrt(self.d_model)
        src_emb = src_emb.transpose(0, 1)
        src_emb = self.rotary_positional_encoding(src_emb)
        src_emb = src_emb.transpose(0, 1)
        src_enc = src_emb
        for layer in self.encoder_layers:
            src_enc = layer(src_enc)
        return src_enc

    def predict_next_n_tokens(self, src_enc, tgt_seq, n_tokens):
        tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
        tgt_emb = tgt_emb.transpose(0, 1)
        tgt_emb = self.rotary_positional_encoding(tgt_emb)
        tgt_emb = tgt_emb.transpose(0, 1)
        tgt_dec = tgt_emb
        for layer in self.decoder_layers:
            tgt_dec = layer(tgt_dec, None, src_enc, None)
        output = self.output_layer(tgt_dec[:, -1:])
        return output.repeat(1, n_tokens, 1)

# Objective Functions

class InfoNCE_Loss(nn.Module):
    def __init__(self, temperature=0.07):
        super(InfoNCE_Loss, self).__init__()
        self.temperature = temperature
        self.cross_entropy = nn.CrossEntropyLoss()

    def forward(self, z_i, z_j):
        """

        Args:

            z_i (torch.Tensor): Flattened representations from view i, shape (2n, embed_dim)

            z_j (torch.Tensor): Flattened representations from view j, shape (2n, embed_dim)



        Returns:

            torch.Tensor: InfoNCE loss

        """
        n = z_i.size(0)
        z = torch.cat([z_i, z_j], dim=0)  # Shape: (2n, embed_dim)

        z = F.normalize(z, dim=1)
        similarity_matrix = torch.matmul(z, z.T)  # Shape: (2n, 2n)

        # Create a mask to exclude self-similarity
        mask = torch.eye(2 * n, device=z.device, dtype=torch.bool)
        similarity_matrix = similarity_matrix.masked_fill(mask, -1e4)  # Use a manageable negative value

        # Create labels for contrastive learning
        labels = torch.arange(n, device=z.device)
        labels = torch.cat([labels + n, labels], dim=0)  # Shape: (2n,)

        # Apply temperature scaling
        similarity_matrix /= self.temperature

        # Compute cross-entropy loss
        loss = self.cross_entropy(similarity_matrix, labels)
        return loss

class CovarianceRegularization(nn.Module):
    def __init__(self, lambda_reg=1e-3):
        super(CovarianceRegularization, self).__init__()
        self.lambda_reg = lambda_reg

    def forward(self, embeddings):
        """

        Args:

            embeddings (torch.Tensor): Embedding tensor, shape (batch_size, embed_dim)



        Returns:

            torch.Tensor: Covariance regularization loss

        """
        batch_size, embed_dim = embeddings.size()
        mean = embeddings.mean(dim=0)
        embeddings_centered = embeddings - mean
        cov = (embeddings_centered.T @ embeddings_centered) / (batch_size - 1)
        cov_loss = torch.sum(cov ** 2) - torch.sum(torch.diag(cov) ** 2)
        return self.lambda_reg * cov_loss

class DynamicsPerformanceLoss(nn.Module):
    def __init__(self, lambda_var=1e-3):
        super(DynamicsPerformanceLoss, self).__init__()
        self.lambda_var = lambda_var

    def forward(self, true_next_state, predicted_next_state):
        """

        Args:

            true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)

            predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)



        Returns:

            torch.Tensor: Dynamics performance loss

        """
        mse_loss = F.mse_loss(predicted_next_state, true_next_state)
        variance_loss = torch.var(predicted_next_state, dim=0).mean()
        return mse_loss + self.lambda_var * variance_loss

class ThoughtConsistencyLoss(nn.Module):
    def __init__(self):
        super(ThoughtConsistencyLoss, self).__init__()

    def forward(self, true_next_state, perturbed_next_state):
        """

        Args:

            true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)

            perturbed_next_state (torch.Tensor): Perturbed next state, shape (batch_size, state_dim)



        Returns:

            torch.Tensor: Thought-consistency loss

        """
        return F.mse_loss(true_next_state, perturbed_next_state)

class PolicyValueJointLoss(nn.Module):
    def __init__(self, lambda_value=0.5):
        super(PolicyValueJointLoss, self).__init__()
        self.lambda_value = lambda_value
        self.cross_entropy = nn.CrossEntropyLoss()
        self.mse_loss = nn.MSELoss()

    def forward(self, policy_logits, true_policy, value_pred, true_value):
        """

        Args:

            policy_logits (torch.Tensor): Logits from the policy network, shape (batch_size * seq_len, num_actions)

            true_policy (torch.Tensor): Ground truth policy, shape (batch_size * seq_len, num_actions)

            value_pred (torch.Tensor): Predicted values, shape (batch_size * seq_len)

            true_value (torch.Tensor): Ground truth values, shape (batch_size * seq_len)



        Returns:

            torch.Tensor: Combined policy and value loss

        """
        policy_logits = policy_logits.view(-1, policy_logits.size(-1))
        true_policy = true_policy.view(-1, true_policy.size(-1))
        value_pred = value_pred.view(-1)
        true_value = true_value.view(-1)

        policy_loss = self.cross_entropy(policy_logits, true_policy.argmax(dim=1))
        value_loss = self.mse_loss(value_pred, true_value)
        return policy_loss + self.lambda_value * value_loss

class ActionDiversityReward(nn.Module):
    def __init__(self, lambda_div=1e-3):
        super(ActionDiversityReward, self).__init__()
        self.lambda_div = lambda_div

    def forward(self, action_embeddings):
        """

        Args:

            action_embeddings (torch.Tensor): Embeddings of actions, shape (batch_size, embed_dim)



        Returns:

            torch.Tensor: Action diversity loss

        """
        similarity_matrix = F.cosine_similarity(action_embeddings.unsqueeze(1), action_embeddings.unsqueeze(0), dim=2)
        # Zero out self-similarity
        similarity_matrix = similarity_matrix - torch.eye(similarity_matrix.size(0)).to(action_embeddings.device)
        diversity_loss = torch.sum(similarity_matrix ** 2)
        return self.lambda_div * diversity_loss

class ExpectedThoughtValueLoss(nn.Module):
    def __init__(self):
        super(ExpectedThoughtValueLoss, self).__init__()

    def forward(self, mcts_best_values):
        """

        Args:

            mcts_best_values (torch.Tensor): Best values from MCTS, shape (batch_size)



        Returns:

            torch.Tensor: ETV loss

        """
        return -mcts_best_values.mean()

class ExplorationRegularization(nn.Module):
    def __init__(self, lambda_expl=1e-3):
        super(ExplorationRegularization, self).__init__()
        self.lambda_expl = lambda_expl

    def forward(self, visit_counts):
        """

        Args:

            visit_counts (torch.Tensor): Visit counts for actions, shape (batch_size, num_actions)



        Returns:

            torch.Tensor: Exploration regularization loss

        """
        reward = torch.sum(1.0 / (visit_counts + 1), dim=-1)
        return self.lambda_expl * reward.mean()

class KL_DivergenceLoss(nn.Module):
    def __init__(self):
        super(KL_DivergenceLoss, self).__init__()

    def forward(self, old_policy, new_policy):
        """

        Args:

            old_policy (torch.Tensor): Old policy probabilities, shape (batch_size, num_actions)

            new_policy (torch.Tensor): New policy probabilities, shape (batch_size, num_actions)



        Returns:

            torch.Tensor: KL divergence loss

        """
        kl_div = F.kl_div(new_policy.log(), old_policy, reduction='batchmean')
        return kl_div

# MuZero Components

class ActionEncoder(nn.Module):
    def __init__(self, action_vocab_size, embed_dim):
        super(ActionEncoder, self).__init__()
        self.embedding = nn.Embedding(action_vocab_size, embed_dim)

    def forward(self, action_indices):
        """

        Args:

            action_indices (torch.Tensor): Tensor of shape (batch_size, seq_len)



        Returns:

            torch.Tensor: Encoded actions of shape (batch_size, seq_len, embed_dim)

        """
        return self.embedding(action_indices)

class RepresentationNetwork(nn.Module):
    def __init__(self, vocab_dim, d_model, state_dim):
        super(RepresentationNetwork, self).__init__()
        self.proj = nn.Linear(vocab_dim, d_model)  # Project from vocab_dim to d_model
        self.linear = nn.Linear(d_model, state_dim)  # Project from d_model to state_dim
        self.norm = nn.LayerNorm(state_dim)

    def forward(self, transformer_output):
        """

        Args:

            transformer_output (torch.Tensor): Shape (batch_size, seq_len, vocab_dim)



        Returns:

            torch.Tensor: Encoded state of shape (batch_size, seq_len, state_dim)

        """
        # First project down from vocab_dim to d_model
        projected_output = self.proj(transformer_output)  # Shape: (batch_size, seq_len, d_model)
        # Then project down from d_model to state_dim
        state = self.linear(projected_output)  # Shape: (batch_size, seq_len, state_dim)
        state = self.norm(state)  # Shape: (batch_size, seq_len, state_dim)
        return state


class DynamicsNetwork(nn.Module):
    def __init__(self, state_dim, action_dim, hidden_dim):
        super(DynamicsNetwork, self).__init__()
        self.rms_norm = nn.LayerNorm(state_dim)
        self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
        self.activation = nn.GELU()
        self.fc2 = nn.Linear(hidden_dim, state_dim)

    def forward(self, state, action):
        """

        Args:

            state (torch.Tensor): Current state, shape (batch_size, state_dim)

            action (torch.Tensor): Action embedding, shape (batch_size, action_dim)



        Returns:

            torch.Tensor: Predicted next state, shape (batch_size, state_dim)

        """
        norm_state = self.rms_norm(state)
        combined = torch.cat([norm_state, action], dim=-1)
        hidden = self.activation(self.fc1(combined))
        next_state = self.fc2(hidden)
        return next_state

class PredictionNetwork(nn.Module):
    def __init__(self, state_dim, action_vocab_size, value_dim):
        super(PredictionNetwork, self).__init__()
        self.state_dim = state_dim
        self.rms_norm = nn.LayerNorm(state_dim)
        self.policy_head = nn.Linear(state_dim, action_vocab_size)  # Output size is action_vocab_size
        self.value_head = nn.Linear(state_dim, value_dim)

    def forward(self, state):
        """

        Args:

            state (torch.Tensor): State representation, shape (batch_size, state_dim)

        Returns:

            Tuple[torch.Tensor, torch.Tensor]: Policy logits and value estimates

        """
        norm_state = self.rms_norm(state)
        policy_logits = self.policy_head(norm_state)  # Shape: (batch_size, action_vocab_size)
        value_estimates = self.value_head(norm_state).squeeze(-1)  # Shape: (batch_size)
        return policy_logits, value_estimates




class MCTSNode:
    __slots__ = [
        'state',
        'parent',
        'action',
        'children',
        'visit_count',
        'value_sum',
        'prior',
        'cached_policy',
        'cached_value',
        'thought_node',
        'entropy',
        'variance'
    ]

    def __init__(self, state, thought_node, parent=None, action=None):
        self.state = state
        self.thought_node = thought_node
        self.parent = parent
        self.action = action
        self.children = {}
        self.visit_count = 0
        self.value_sum = 0.0
        self.prior = 0.0
        self.cached_policy = None
        self.cached_value = None
        self.entropy = 0.0
        self.variance = 0.0

    def expand(self, priors):
        for child_thought_node in self.thought_node.children:
            action = child_thought_node.name
            if action not in self.children:
                child_state = self.state.apply_action(action)
                child_node = MCTSNode(
                    state=child_state,
                    thought_node=child_thought_node,
                    parent=self,
                    action=action
                )
                child_node.prior = priors.get(action, 1.0 / len(self.thought_node.children))
                self.children[action] = child_node

    def is_leaf(self):
        return len(self.children) == 0

    def ucb_score(self, total_visits, exploration_constant=math.sqrt(2)):
        if self.visit_count == 0:
            return float('inf')  # Ensure unvisited nodes are selected first
        avg_value = self.value_sum / self.visit_count
        exploration_term = exploration_constant * self.prior * math.sqrt(total_visits) / (1 + self.visit_count)
        entropy_term = -0.1 * self.entropy  # Slightly prefer lower entropy
        variance_term = 0.05 * self.variance  # Slightly prefer higher variance
        return avg_value + exploration_term + entropy_term + variance_term


class MCTS:
    def __init__(self, prediction_network, dynamics_network, action_encoder, num_iterations=10, exploration_constant=math.sqrt(2), beam_size=5, n_tokens_predict=3):
        self.prediction_network = prediction_network
        self.dynamics_network = dynamics_network
        self.action_encoder = action_encoder
        self.num_iterations = num_iterations
        self.exploration_constant = exploration_constant
        self.beam_size = beam_size
        self.n_tokens_predict = n_tokens_predict
        self.cache = {}

    def search_with_beam(self, root_state):
        root_node = MCTSNode(state=root_state, thought_node=root_state.thought_node)
        
        # Evaluate the root node and backpropagate
        value_estimate = self.evaluate(root_node)  # Evaluate and expand root_node
        self.backpropagate(root_node, value_estimate)  # Backpropagate the value

        beam = [(root_node, 0.0, 0.0, 0.0, [])]  # (node, score, cum_entropy, cum_variance, action_sequence)

        for iteration in range(self.num_iterations):
            all_candidates = []
            for node, score, cum_entropy, cum_variance, action_sequence in beam:
                if node.is_leaf():
                    value_estimate = self.evaluate(node)
                    self.backpropagate(node, value_estimate)  # Backpropagate after evaluation
                if len(node.children) == 0:
                    continue  # No children to expand

                total_visits = sum(child.visit_count for child in node.children.values())
                # Select top actions based on UCB score
                sorted_children = sorted(
                    node.children.items(),
                    key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant),
                    reverse=True
                )[:self.beam_size]

                for selected_action, selected_node in sorted_children:
                    current_node = selected_node
                    current_sequence = action_sequence + [selected_action]
                    current_score = score
                    current_entropy = cum_entropy + selected_node.entropy
                    current_variance = cum_variance + selected_node.variance

                    # Predict n_tokens_predict actions
                    for _ in range(self.n_tokens_predict):
                        if current_node.is_leaf():
                            value_estimate = self.evaluate(current_node)
                            self.backpropagate(current_node, value_estimate)  # Backpropagate after evaluation
                        if len(current_node.children) == 0:
                            break  # No more actions
                        total_visits = sum(child.visit_count for child in current_node.children.values())
                        next_action, next_node = max(
                            current_node.children.items(),
                            key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant)
                        )
                        current_sequence.append(next_action)
                        
                        # Prevent division by zero by ensuring visit_count > 0
                        if next_node.visit_count > 0:
                            current_score += next_node.value_sum / next_node.visit_count
                        else:
                            # Assign a default value or handle the zero division case
                            current_score += 0.0  # Alternatively, use a small epsilon or skip

                        current_entropy += next_node.entropy
                        current_variance += next_node.variance
                        current_node = next_node

                    all_candidates.append((current_node, current_score, current_entropy, current_variance, current_sequence))

            if not all_candidates:
                break  # No more candidates to expand

            # Select top beam_size candidates
            beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:self.beam_size]
            print(f"Iteration {iteration + 1}: Beam size after sorting: {len(beam)}")  # Debug

        if beam:
            best_sequence = beam[0][4]
            return best_sequence
        else:
            return []



    def search(self, root_state):
        root_node = MCTSNode(state=root_state, thought_node=root_state.thought_node)
        
        for _ in range(self.num_iterations):
            node = self.select(root_node)
            value = self.evaluate(node)
            self.backpropagate(node, value)
        
        return self.best_action_sequence(root_node)

    def select(self, node):
        while not node.is_leaf():
            total_visits = sum(child.visit_count for child in node.children.values())
            _, node = max(
                node.children.items(),
                key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant)
            )
        return node

    def evaluate(self, node):
        # Extract the last time step
        state_representation = node.state.representation[:, -1, :]  # Shape: (batch_size=1, state_dim)
        print(f"Evaluating node with state_representation shape: {state_representation.shape}")  # Debug
        policy_logits, value_estimate = self.prediction_network(state_representation)
        print(f"Policy logits shape: {policy_logits.shape}, Value estimate shape: {value_estimate.shape}")  # Debug
        value_estimate = value_estimate.item()  # Now safe as batch_size=1

        policy_probs = F.softmax(policy_logits, dim=-1).squeeze(0)  # Shape: (action_vocab_size,)
        print(f"Policy probabilities shape: {policy_probs.shape}")  # Debug

        priors = {}
        for child in node.thought_node.children:
            action_name = child.name
            action_idx = action_to_index.get(action_name, None)
            if action_idx is not None and action_idx < policy_probs.size(0):
                priors[action_name] = policy_probs[action_idx].item()
            else:
                priors[action_name] = 1.0 / len(node.thought_node.children)

        node.expand(priors)

        # Calculate entropy and variance
        entropy = -torch.sum(policy_probs * torch.log(policy_probs + 1e-9))
        variance = torch.var(policy_probs)
        node.entropy = entropy.item()
        node.variance = variance.item()

        print(f"Node entropy: {node.entropy}, variance: {node.variance}")  # Debug

        return value_estimate  # Return the value estimate for backpropagation


    def backpropagate(self, node, value):
        while node is not None:
            node.visit_count += 1
            node.value_sum += value
            node = node.parent

    def best_action_sequence(self, root_node):
        sequences = []
        self._generate_sequences(root_node, [], sequences)
        
        # Score sequences based on visit counts, entropy, and variance
        scored_sequences = []
        for seq in sequences:
            score = sum(node.visit_count for node in seq)
            entropy = sum(node.entropy for node in seq)
            variance = sum(node.variance for node in seq)
            adjusted_score = score - 0.1 * entropy + 0.05 * variance
            scored_sequences.append((seq, adjusted_score))
        
        # Sort sequences by adjusted score and select top beam_size
        best_sequences = sorted(scored_sequences, key=lambda x: x[1], reverse=True)[:self.beam_size]
        
        # Return the actions of the best sequence
        best_sequence = best_sequences[0][0]
        return [node.action for node in best_sequence[1:self.n_tokens_predict+1]]  # Exclude root node

    def _generate_sequences(self, node, current_sequence, sequences):
        current_sequence.append(node)
        if len(current_sequence) > self.n_tokens_predict or not node.children:
            sequences.append(current_sequence)
        else:
            for child in node.children.values():
                self._generate_sequences(child, current_sequence.copy(), sequences)

class State:
    def __init__(self, representation, dynamics_network, action_encoder, thought_node):
        self.representation = representation
        self.dynamics_network = dynamics_network
        self.action_encoder = action_encoder
        self.thought_node = thought_node

    def apply_action(self, action):
        next_thought_node = None
        for child in self.thought_node.children:
            if child.name == action:
                next_thought_node = child
                break
        if next_thought_node is None:
            raise ValueError(f"Action '{action}' is not valid from the current thought node.")

        # Adjust action_index and action_embedding shapes
        action_index = torch.tensor([action_to_index[action]], device=self.representation.device)
        action_embedding = self.action_encoder(action_index)  # Shape: (batch_size=1, action_dim)

        # Extract the last time step of the state
        state = self.representation[:, -1, :]  # Shape: (batch_size, state_dim)

        # Ensure action_embedding matches the state dimension
        next_state_representation = self.dynamics_network(state, action_embedding)  # Shape: (batch_size, state_dim)

        # Append the new state to the representation history
        new_representation = torch.cat([self.representation, next_state_representation.unsqueeze(1)], dim=1)  # Shape: (batch_size, seq_len+1, state_dim)

        return State(
            representation=new_representation,
            dynamics_network=self.dynamics_network,
            action_encoder=self.action_encoder,
            thought_node=next_thought_node
        )



class PPOAgent:
    def __init__(self, policy_network, optimizer, clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5):
        self.policy_network = policy_network
        self.optimizer = optimizer
        self.clip_epsilon = clip_epsilon
        self.entropy_coef = entropy_coef
        self.value_coef = value_coef

    def compute_loss(self, states, old_log_probs, actions, returns, advantages):
        # Get policy logits and value estimates
        policy_logits, value_estimates = self.policy_network(states)
        batch_size, seq_len, num_actions = policy_logits.size()

        # Flatten tensors using reshape
        policy_logits = policy_logits.reshape(-1, num_actions)  # Shape: (batch_size * seq_len, num_actions)
        value_estimates = value_estimates.view(-1)
        actions = actions.reshape(-1)                           # Shape: (batch_size * seq_len)
        old_log_probs = old_log_probs.reshape(-1)               # Shape: (batch_size * seq_len)
        returns = returns.view(-1)
        advantages = advantages.reshape(-1)                     # Shape: (batch_size * seq_len)

        # Ensure value_estimates and returns are the same size
        if value_estimates.size() != returns.size():
            print(f"Shape mismatch: value_estimates shape: {value_estimates.size()}, returns shape: {returns.size()}")
            value_estimates = value_estimates[:returns.size(0)]

        # Compute new log probabilities
        new_log_probs_all = F.log_softmax(policy_logits, dim=-1)  # Shape: (batch_size * seq_len, num_actions)
        new_log_probs = new_log_probs_all.gather(1, actions.unsqueeze(-1)).squeeze(-1)  # Shape: (batch_size * seq_len)

        # Compute ratios
        ratios = torch.exp(new_log_probs - old_log_probs)

        # PPO surrogate loss
        surr1 = ratios * advantages
        surr2 = torch.clamp(ratios, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * advantages
        policy_loss = -torch.min(surr1, surr2).mean()

        # Value loss
        value_loss = F.mse_loss(value_estimates, returns)

        # Entropy loss
        entropy = -(new_log_probs * torch.exp(new_log_probs)).mean()

        # Total loss
        total_loss = policy_loss + self.value_coef * value_loss - self.entropy_coef * entropy
        return total_loss


# Tree of Thought Components

class ThoughtNode:
    def __init__(self, name):
        self.name = name
        self.children = []
        self.parent = None

    def add_child(self, child_node):
        child_node.parent = self
        self.children.append(child_node)

# Function to build the Tree of Thought from your detailed structure
def build_tree_of_thought():
    # Create the root node
    root = ThoughtNode('Problem-Solving Process')

    # Level 1 nodes
    problem_identification = ThoughtNode('Problem Identification')
    problem_analysis = ThoughtNode('Problem Analysis')
    solution_generation = ThoughtNode('Solution Generation')
    implementation = ThoughtNode('Implementation')
    evaluation_adjustment = ThoughtNode('Evaluation and Adjustment')

    root.add_child(problem_identification)
    root.add_child(problem_analysis)
    root.add_child(solution_generation)
    root.add_child(implementation)
    root.add_child(evaluation_adjustment)

    # Problem Identification children
    B1 = ThoughtNode('Define the Problem')
    B2 = ThoughtNode('Identify Stakeholders')
    B3 = ThoughtNode('Determine Constraints')
    B4 = ThoughtNode('Recognize Problem Type')
    B5 = ThoughtNode('Historical Context')
    problem_identification.add_child(B1)
    problem_identification.add_child(B2)
    problem_identification.add_child(B3)
    problem_identification.add_child(B4)
    problem_identification.add_child(B5)

    # Define the Problem children
    B1a = ThoughtNode('Problem Statement Formulation')
    B1b = ThoughtNode('Scope Definition')
    B1c = ThoughtNode('Objective Setting')
    B1.add_child(B1a)
    B1.add_child(B1b)
    B1.add_child(B1c)

    # Identify Stakeholders children
    B2a = ThoughtNode('Stakeholder Mapping')
    B2b = ThoughtNode('Interest and Influence Analysis')
    B2c = ThoughtNode('Engagement Strategy')
    B2.add_child(B2a)
    B2.add_child(B2b)
    B2.add_child(B2c)

    # Determine Constraints children
    B3a = ThoughtNode('Resource Limitations')
    B3b = ThoughtNode('Time Constraints')
    B3c = ThoughtNode('Legal and Regulatory Constraints')
    B3.add_child(B3a)
    B3.add_child(B3b)
    B3.add_child(B3c)

    # Recognize Problem Type children
    B4a = ThoughtNode('Simple vs Complex')
    B4b = ThoughtNode('Known vs Unknown')
    B4c = ThoughtNode('Tame vs Wicked Problems')
    B4.add_child(B4a)
    B4.add_child(B4b)
    B4.add_child(B4c)

    # Historical Context children
    B5a = ThoughtNode('Previous Attempts')
    B5b = ThoughtNode('Lessons Learned')
    B5c = ThoughtNode('Environmental Factors')
    B5.add_child(B5a)
    B5.add_child(B5b)
    B5.add_child(B5c)

    # Problem Analysis children
    C1 = ThoughtNode('Root Cause Analysis')
    C2 = ThoughtNode('System Mapping')
    C3 = ThoughtNode('Data Collection')
    C4 = ThoughtNode('Impact Assessment')
    C5 = ThoughtNode('Theoretical Framework')
    problem_analysis.add_child(C1)
    problem_analysis.add_child(C2)
    problem_analysis.add_child(C3)
    problem_analysis.add_child(C4)
    problem_analysis.add_child(C5)

    # Root Cause Analysis children
    C1a = ThoughtNode('5 Whys Technique')
    C1b = ThoughtNode('Fishbone Diagram')
    C1c = ThoughtNode('Pareto Analysis')
    C1.add_child(C1a)
    C1.add_child(C1b)
    C1.add_child(C1c)

    # System Mapping children
    C2a = ThoughtNode('Causal Loop Diagrams')
    C2b = ThoughtNode('Stock and Flow Models')
    C2c = ThoughtNode('Network Analysis')
    C2.add_child(C2a)
    C2.add_child(C2b)
    C2.add_child(C2c)

    # Data Collection children
    C3a = ThoughtNode('Quantitative Data')
    C3b = ThoughtNode('Qualitative Data')
    C3c = ThoughtNode('Data Validation')
    C3.add_child(C3a)
    C3.add_child(C3b)
    C3.add_child(C3c)

    # Quantitative Data children
    C3a1 = ThoughtNode('Surveys and Questionnaires')
    C3a2 = ThoughtNode('Experimental Data')
    C3a3 = ThoughtNode('Big Data Analytics')
    C3a.add_child(C3a1)
    C3a.add_child(C3a2)
    C3a.add_child(C3a3)

    # Qualitative Data children
    C3b1 = ThoughtNode('Interviews')
    C3b2 = ThoughtNode('Focus Groups')
    C3b3 = ThoughtNode('Observational Studies')
    C3b.add_child(C3b1)
    C3b.add_child(C3b2)
    C3b.add_child(C3b3)

    # Data Validation children
    C3c1 = ThoughtNode('Statistical Validation')
    C3c2 = ThoughtNode('Cross-Validation')
    C3c3 = ThoughtNode('Expert Review')
    C3c.add_child(C3c1)
    C3c.add_child(C3c2)
    C3c.add_child(C3c3)

    # Impact Assessment children
    C4a = ThoughtNode('Environmental Impact')
    C4b = ThoughtNode('Social Impact')
    C4c = ThoughtNode('Economic Impact')
    C4.add_child(C4a)
    C4.add_child(C4b)
    C4.add_child(C4c)

    # Theoretical Framework children
    C5a = ThoughtNode('Literature Review')
    C5b = ThoughtNode('Conceptual Modeling')
    C5c = ThoughtNode('Hypothesis Formation')
    C5.add_child(C5a)
    C5.add_child(C5b)
    C5.add_child(C5c)

    # Solution Generation children
    D1 = ThoughtNode('Creative Problem Solving')
    D2 = ThoughtNode('Analytical Approach')
    D3 = ThoughtNode('Mathematical Computation')
    D4 = ThoughtNode('Decision Making')
    solution_generation.add_child(D1)
    solution_generation.add_child(D2)
    solution_generation.add_child(D3)
    solution_generation.add_child(D4)

    # Action Planning, Resource Allocation, Change Management children (implementation phase)
    E1 = ThoughtNode('Action Planning')
    E2 = ThoughtNode('Resource Allocation')
    E3 = ThoughtNode('Change Management')
    implementation.add_child(E1)
    implementation.add_child(E2)
    implementation.add_child(E3)

    # Verification, Performance Metrics, Feedback Loops, Continuous Improvement children (evaluation phase)
    F1 = ThoughtNode('Verification')
    F2 = ThoughtNode('Performance Metrics')
    F3 = ThoughtNode('Feedback Loops')
    F4 = ThoughtNode('Continuous Improvement')
    evaluation_adjustment.add_child(F1)
    evaluation_adjustment.add_child(F2)
    evaluation_adjustment.add_child(F3)
    evaluation_adjustment.add_child(F4)

    # Cross-Cutting Considerations children
    G = ThoughtNode('Cross-Cutting Considerations')
    root.add_child(G)

    # Cross-Cutting Considerations children
    G1 = ThoughtNode('Ethical Framework')
    G2 = ThoughtNode('Stakeholder Management')
    G3 = ThoughtNode('Interdisciplinary Connections')
    G4 = ThoughtNode('Technological Integration')
    G5 = ThoughtNode('Emotional Intelligence')
    G6 = ThoughtNode('Collaborative Problem Solving')
    G7 = ThoughtNode('Computational Considerations')  # Assuming H was intended as G7
    G8 = ThoughtNode('Order of Operations')  # Assuming I was intended as G8
    G9 = ThoughtNode('Critical Thinking')  # Assuming J was intended as G9
    G10 = ThoughtNode('Future Perspective')  # Assuming K was intended as G10
    G11 = ThoughtNode('Learning and Adaptation')  # Assuming L was intended as G11
    G.add_child(G1)
    G.add_child(G2)
    G.add_child(G3)
    G.add_child(G4)
    G.add_child(G5)
    G.add_child(G6)
    G.add_child(G7)
    G.add_child(G8)
    G.add_child(G9)
    G.add_child(G10)
    G.add_child(G11)

    # Ethical Framework children
    G1a = ThoughtNode('Value-based Decision Making')
    G1b = ThoughtNode('Long-term Consequences')
    G1.add_child(G1a)
    G1.add_child(G1b)

    # Value-based Decision Making children
    G1a1 = ThoughtNode('Ethical Theories Application')
    G1a2 = ThoughtNode('Moral Dilemma Resolution')
    G1a.add_child(G1a1)
    G1a.add_child(G1a2)

    # Long-term Consequences children
    G1b1 = ThoughtNode('Sustainability Assessment')
    G1b2 = ThoughtNode('Intergenerational Impact')
    G1b.add_child(G1b1)
    G1b.add_child(G1b2)

    # Stakeholder Management children
    G2a = ThoughtNode('Direct Stakeholders')
    G2b = ThoughtNode('Indirect Stakeholders')
    G2c = ThoughtNode('Conflicting Interests')
    G2.add_child(G2a)
    G2.add_child(G2b)
    G2.add_child(G2c)

    # Conflicting Interests children
    G2c1 = ThoughtNode('Negotiation Strategies')
    G2c2 = ThoughtNode('Conflict Resolution Techniques')
    G2c.add_child(G2c1)
    G2c.add_child(G2c2)

    # Interdisciplinary Connections children
    G3a = ThoughtNode('Related Fields')
    G3b = ThoughtNode('Cross-disciplinary Impact')
    G3.add_child(G3a)
    G3.add_child(G3b)

    # Related Fields children
    G3a1 = ThoughtNode('Cross-domain Knowledge Transfer')
    G3a2 = ThoughtNode('Interdisciplinary Collaboration')
    G3a.add_child(G3a1)
    G3a.add_child(G3a2)

    # Cross-disciplinary Impact children
    G3b1 = ThoughtNode('Synergy Identification')
    G3b2 = ThoughtNode('Holistic Impact Assessment')
    G3b.add_child(G3b1)
    G3b.add_child(G3b2)

    # Technological Integration children
    G4a = ThoughtNode('AI-assisted Problem Solving')
    G4b = ThoughtNode('Data-driven Insights')
    G4c = ThoughtNode('Digital Collaboration Tools')
    G4.add_child(G4a)
    G4.add_child(G4b)
    G4.add_child(G4c)

    # AI-assisted Problem Solving children
    G4a1 = ThoughtNode('Machine Learning Models')
    G4a2 = ThoughtNode('Natural Language Processing')
    G4a.add_child(G4a1)
    G4a.add_child(G4a2)

    # Data-driven Insights children
    G4b1 = ThoughtNode('Big Data Analytics')
    G4b2 = ThoughtNode('Predictive Modeling')
    G4b.add_child(G4b1)
    G4b.add_child(G4b2)

    # Digital Collaboration Tools children
    G4c1 = ThoughtNode('Project Management Platforms')
    G4c2 = ThoughtNode('Virtual Reality Collaboration')
    G4c.add_child(G4c1)
    G4c.add_child(G4c2)

    # Emotional Intelligence children
    G5a = ThoughtNode('Self-Awareness')
    G5b = ThoughtNode('Empathy')
    G5c = ThoughtNode('Stress Management')
    G5.add_child(G5a)
    G5.add_child(G5b)
    G5.add_child(G5c)

    # Self-Awareness children
    G5a1 = ThoughtNode('Emotional Recognition')
    G5a2 = ThoughtNode('Personal Bias Identification')
    G5a.add_child(G5a1)
    G5a.add_child(G5a2)

    # Empathy children
    G5b1 = ThoughtNode('Perspective Taking')
    G5b2 = ThoughtNode('Active Listening')
    G5b.add_child(G5b1)
    G5b.add_child(G5b2)

    # Stress Management children
    G5c1 = ThoughtNode('Mindfulness Techniques')
    G5c2 = ThoughtNode('Resilience Building')
    G5c.add_child(G5c1)
    G5c.add_child(G5c2)

    # Collaborative Problem Solving children
    G6a = ThoughtNode('Team Dynamics')
    G6b = ThoughtNode('Communication Strategies')
    G6c = ThoughtNode('Conflict Resolution')
    G6.add_child(G6a)
    G6.add_child(G6b)
    G6.add_child(G6c)

    # Team Dynamics children
    G6a1 = ThoughtNode('Team Formation Strategies')
    G6a2 = ThoughtNode('Role Assignment')
    G6a.add_child(G6a1)
    G6a.add_child(G6a2)

    # Communication Strategies children
    G6b1 = ThoughtNode('Clear Messaging')
    G6b2 = ThoughtNode('Feedback Mechanisms')
    G6b.add_child(G6b1)
    G6b.add_child(G6b2)

    # Conflict Resolution children
    G6c1 = ThoughtNode('Mediation Techniques')
    G6c2 = ThoughtNode('Consensus Building')
    G6c.add_child(G6c1)
    G6c.add_child(G6c2)

    # Computational Considerations children
    G7a = ThoughtNode('CPU Operations')
    G7b = ThoughtNode('GPU Parallelization')
    G7c = ThoughtNode('Floating-Point Precision')
    G7.add_child(G7a)
    G7.add_child(G7b)
    G7.add_child(G7c)

    # CPU Operations children
    G7a1 = ThoughtNode('Instruction Set Architecture')
    G7a2 = ThoughtNode('Pipelining and Parallelism')
    G7a.add_child(G7a1)
    G7a.add_child(G7a2)

    # GPU Parallelization children
    G7b1 = ThoughtNode('CUDA Programming')
    G7b2 = ThoughtNode('OpenCL Framework')
    G7b.add_child(G7b1)
    G7b.add_child(G7b2)

    # Floating-Point Precision children
    G7c1 = ThoughtNode('IEEE 754 Standard')
    G7c2 = ThoughtNode('Error Propagation Analysis')
    G7c.add_child(G7c1)
    G7c.add_child(G7c2)

    # Order of Operations children
    G8a = ThoughtNode('Parentheses')
    G8b = ThoughtNode('Exponents')
    G8c = ThoughtNode('Multiplication and Division')
    G8d = ThoughtNode('Addition and Subtraction')
    G8.add_child(G8a)
    G8.add_child(G8b)
    G8.add_child(G8c)
    G8.add_child(G8d)

    # Critical Thinking children
    G9a = ThoughtNode('Assumptions Questioning')
    G9b = ThoughtNode('Bias Recognition')
    G9.add_child(G9a)
    G9.add_child(G9b)

    # Assumptions Questioning children
    G9a1 = ThoughtNode('Socratic Questioning')
    G9a2 = ThoughtNode('Devil\'s Advocate Approach')
    G9a.add_child(G9a1)
    G9a.add_child(G9a2)

    # Bias Recognition children
    G9b1 = ThoughtNode('Cognitive Bias Identification')
    G9b2 = ThoughtNode('Debiasing Techniques')
    G9b.add_child(G9b1)
    G9b.add_child(G9b2)

    # Future Perspective children
    G10a = ThoughtNode('Short-term Projections')
    G10b = ThoughtNode('Long-term Scenarios')
    G10c = ThoughtNode('Potential Impacts')
    G10.add_child(G10a)
    G10.add_child(G10b)
    G10.add_child(G10c)

    # Short-term Projections children
    G10a1 = ThoughtNode('Trend Analysis')
    G10a2 = ThoughtNode('Scenario Planning')
    G10a.add_child(G10a1)
    G10a.add_child(G10a2)

    # Long-term Scenarios children
    G10b1 = ThoughtNode('Futures Wheel')
    G10b2 = ThoughtNode('Backcasting')
    G10b.add_child(G10b1)
    G10b.add_child(G10b2)

    # Potential Impacts children
    G10c1 = ThoughtNode('Risk Assessment')
    G10c2 = ThoughtNode('Opportunity Identification')
    G10c.add_child(G10c1)
    G10c.add_child(G10c2)

    # Learning and Adaptation children
    G11a = ThoughtNode('Reflective Practice')
    G11b = ThoughtNode('Knowledge Transfer')
    G11c = ThoughtNode('Adaptive Problem Solving')
    G11.add_child(G11a)
    G11.add_child(G11b)
    G11.add_child(G11c)

    # Reflective Practice children
    G11a1 = ThoughtNode('After Action Review')
    G11a2 = ThoughtNode('Learning Journals')
    G11a.add_child(G11a1)
    G11a.add_child(G11a2)

    # Knowledge Transfer children
    G11b1 = ThoughtNode('Best Practice Documentation')
    G11b2 = ThoughtNode('Mentoring Programs')
    G11b.add_child(G11b1)
    G11b.add_child(G11b2)

    # Adaptive Problem Solving children
    G11c1 = ThoughtNode('Iterative Approaches')
    G11c2 = ThoughtNode('Flexibility in Methodology')
    G11c.add_child(G11c1)
    G11c.add_child(G11c2)

    return root

def traverse_tree(node, action_list):
    if node.name not in action_list:
        action_list.append(node.name)
    for child in node.children:
        traverse_tree(child, action_list)



def infer(query, world_model_components, root_thought_node, tokenizer, max_length=20, inference_mode='world_model', beam_size=5, n_tokens_predict=3, mcts_iterations=10, exploration_constant=1.414):


    """

    Perform inference given a query, utilizing the Tree of Thought and MCTS with multi-token beam search.



    Args:

        query (str): The input query or prompt.

        world_model_components (tuple): Tuple containing the model components.

        root_thought_node (ThoughtNode): The root node of the Tree of Thought.

        tokenizer (transformers.PreTrainedTokenizer): The tokenizer used.

        max_length (int): Maximum length for the generated sequence.

        inference_mode (str): Inference mode ('world_model', 'without_world_model', 'world_model_tree_of_thought')

        beam_size (int): Size of the beam for beam search

        n_tokens_predict (int): Number of tokens to predict at each step



    Returns:

        List[str] or str: The sequence of actions (thoughts) selected or generated text.

    """
    representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer = world_model_components

    # Tokenize and encode the query
    input_ids = tokenizer.encode(query, return_tensors='pt').to(device)
    attention_mask = (input_ids != tokenizer.pad_token_id).long()

    if inference_mode == 'without_world_model':
        # Directly use the transformer model to generate text with beam search
        with torch.no_grad():
            generated_sequences = model_transformer.generate_with_beam_search(
                src=input_ids,
                tokenizer=tokenizer,
                beam_size=beam_size,
                max_length=max_length,
                n_tokens_predict=n_tokens_predict,
                temperature=args.temperature
            )
        best_sequence, best_score = generated_sequences[0]
        generated_text = tokenizer.decode(best_sequence[0], skip_special_tokens=True)
        return generated_text

    else:
        # Use the world model components
        with torch.no_grad():
            transformer_output = model_transformer(input_ids, input_ids)
            # Get the initial state representation
            initial_representation = representation_network(transformer_output)  # Shape: (batch_size=1, seq_len, state_dim)
            initial_representation = initial_representation[:, -1, :].unsqueeze(1)  # Shape: (batch_size=1, 1, state_dim)
            initial_state = State(
                representation=initial_representation,
                dynamics_network=dynamics_network,
                action_encoder=action_encoder,
                thought_node=root_thought_node
            )
            if inference_mode == 'world_model_tree_of_thought':
                # Use MCTS with Tree of Thought and multi-token beam search
                mcts = MCTS(prediction_network, dynamics_network, action_encoder, num_iterations=mcts_iterations, exploration_constant=exploration_constant)

                current_state = initial_state
                thought_sequence = []

                for _ in range(max_length // n_tokens_predict):
                    best_actions = mcts.search_with_beam(current_state)

                    thought_sequence.extend(best_actions)

                    # Apply the best actions to get the next state
                    for action in best_actions:
                        current_state = current_state.apply_action(action)

                    # Check if we've reached a leaf node (no further actions)
                    if len(current_state.thought_node.children) == 0:
                        break

                return thought_sequence
            else:
                # Use the world model without Tree of Thought, but with multi-token beam search
                beam = [(initial_state, 0.0, torch.zeros(1, device=device), torch.zeros(1, device=device))]  # (state, score, cum_entropy, cum_variance)
                
                for _ in range(max_length // n_tokens_predict):
                    all_candidates = []
                    for state, score, cum_entropy, cum_variance in beam:
                        policy_logits, _ = prediction_network(state.representation)
                        probs = F.softmax(policy_logits / args.temperature, dim=-1)
                        entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
                        variance = torch.var(probs, dim=-1)
                        
                        topk_probs, topk_indices = torch.topk(probs, k=beam_size, dim=-1)
                        
                        for i in range(beam_size ** n_tokens_predict):
                            indices = [i // (beam_size ** j) % beam_size for j in range(n_tokens_predict)]
                            new_actions = [index_to_action[topk_indices[0, j, indices[j]].item()] for j in range(n_tokens_predict)]
                            new_score = score + torch.sum(torch.log(topk_probs[0, range(n_tokens_predict), indices]))
                            new_entropy = cum_entropy + torch.sum(entropy[0, indices])
                            new_variance = cum_variance + torch.sum(variance[0, indices])
                            
                            new_state = state
                            for action in new_actions:
                                new_state = new_state.apply_action(action)
                            
                            all_candidates.append((new_state, new_score, new_entropy, new_variance, new_actions))
                    
                    # Select top beam_size candidates
                    beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:beam_size]
                    
                    # Accumulate actions
                    if not thought_sequence:
                        thought_sequence = [b[4] for b in beam]
                    else:
                        for i, b in enumerate(beam):
                            thought_sequence[i].extend(b[4])
                
                # Return the top sequence
                return thought_sequence[0]


def train_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
    representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, _ = world_model_components
    representation_network.train()
    dynamics_network.train()
    prediction_network.train()
    action_encoder.train()
    ppo_agent.policy_network.train()

    total_loss = 0.0
    optimizer.zero_grad()
    print(f"Starting World Model training epoch with {len(train_loader)} batches...")

    for i, batch in enumerate(train_loader):
        print(f"Processing batch {i+1}/{len(train_loader)}...")

        # Move batches to the device
        src_batch = batch['input_ids'].to(device)
        tgt_batch = batch['labels'].to(device)

        with torch.amp.autocast(device_type='cuda'):
            print("Forward pass through Transformer (frozen)...")
            with torch.no_grad():
                transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])

            # World Model - Representation
            state_representation = representation_network(transformer_output)

            # For simplicity, let's assume true actions are provided (e.g., next tokens)
            true_actions = tgt_batch[:, :-1]
            action_sequences = true_actions

            # Get action embeddings
            action_embeddings = action_encoder(action_sequences)

            # Apply dynamics network
            predicted_next_state_batch = dynamics_network(state_representation, action_embeddings)

            # Prediction Network - Policy logits and value
            policy_logits, value_estimates = prediction_network(predicted_next_state_batch)

            # Define true_policy and true_value as placeholders on the GPU
            true_policy = F.one_hot(true_actions, num_classes=input_dim).float()
            true_value = torch.zeros_like(value_estimates).to(device)

            # Compute individual losses
            ppo_loss = ppo_agent.compute_loss(
                state_representation,
                torch.zeros_like(true_actions, dtype=torch.float32).to(device),
                true_actions,
                torch.zeros_like(value_estimates, dtype=torch.float32).to(device),
                torch.zeros_like(value_estimates, dtype=torch.float32).to(device)
            )

            info_nce = InfoNCE_Loss()(
                state_representation.view(-1, state_dim),
                F.dropout(state_representation.view(-1, state_dim), p=0.1, training=True)
            )

            covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
            dynamics_loss = DynamicsPerformanceLoss()(state_representation, predicted_next_state_batch)
            
            perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
            thought_loss = ThoughtConsistencyLoss()(predicted_next_state_batch, perturbed_next_state)
            
            pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
            action_diversity = ActionDiversityReward()(action_embeddings.view(-1, embed_dim))
            
            mcts_best_values = torch.zeros(true_actions.size(0)).to(device)
            etv = ExpectedThoughtValueLoss()(mcts_best_values)
            
            visit_counts = torch.ones(true_actions.size(0), policy_logits.size(-1)).to(device)
            exploration = ExplorationRegularization()(visit_counts)
            
            old_policy = F.softmax(policy_logits.detach(), dim=-1)
            new_policy = F.softmax(policy_logits, dim=-1)
            kl_loss = KL_DivergenceLoss()(old_policy, new_policy)

            # Total Loss
            loss = (
                ppo_loss +
                info_nce +
                covariance +
                dynamics_loss +
                thought_loss +
                pv_loss +
                action_diversity +
                etv +
                exploration +
                kl_loss
            )
            loss = loss / args.accumulation_steps

        print("Backward pass...")
        scaler.scale(loss).backward()

        if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
            print("Gradient clipping...")
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(
                [param for group in optimizer.param_groups for param in group['params']],
                args.max_grad_norm
            )

            print("Optimizer step...")
            scaler.step(optimizer)
            scaler.update()

            print("Zeroing gradients...")
            optimizer.zero_grad()

            print("Updating learning rate...")
            scheduler.step()

        total_loss += loss.item() * args.accumulation_steps

        # Print individual losses and total loss for this batch
        print(f"Batch {i+1} completed. Losses:")
        print(f"  PPO Loss: {ppo_loss.item():.4f}")
        print(f"  InfoNCE Loss: {info_nce.item():.4f}")
        print(f"  Covariance Loss: {covariance.item():.4f}")
        print(f"  Dynamics Loss: {dynamics_loss.item():.4f}")
        print(f"  Thought Consistency Loss: {thought_loss.item():.4f}")
        print(f"  Policy-Value Loss: {pv_loss.item():.4f}")
        print(f"  Action Diversity Loss: {action_diversity.item():.4f}")
        print(f"  Expected Thought Value Loss: {etv.item():.4f}")
        print(f"  Exploration Loss: {exploration.item():.4f}")
        print(f"  KL Divergence Loss: {kl_loss.item():.4f}")
        print(f"  Total Loss: {loss.item():.4f}")

    avg_loss = total_loss / len(train_loader)
    print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
    return avg_loss

def train_epoch_language_model(model, train_loader, optimizer, scheduler, scaler, args):
    model.train()
    total_loss = 0.0
    optimizer.zero_grad()
    print(f"Starting Language Model training epoch with {len(train_loader)} batches...")

    for i, batch in enumerate(train_loader):
        input_ids = batch['input_ids'].to(device)
        labels = batch['labels'].to(device)

        with autocast():
            outputs = model(input_ids, input_ids)
            logits = outputs.view(-1, outputs.size(-1))
            labels = labels.view(-1)
            loss = F.cross_entropy(logits, labels, ignore_index=model.embedding.padding_idx)
            loss = loss / args.accumulation_steps

        scaler.scale(loss).backward()

        if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(
                [param for group in optimizer.param_groups for param in group['params']],
                args.max_grad_norm
            )
            scaler.step(optimizer)
            scaler.update()
            optimizer.zero_grad()
            scheduler.step()

        total_loss += loss.item() * args.accumulation_steps
        print(f"Batch {i + 1} completed. Current loss: {loss.item():.4f}")

    avg_loss = total_loss / len(train_loader)
    print(f"Language Model training epoch completed. Average loss: {avg_loss:.4f}")
    return avg_loss



def main():
    args = parse_args()
    print("Arguments parsed successfully.")

    # Create save directory
    os.makedirs(args.save_dir, exist_ok=True)
    print(f"Save directory created: {args.save_dir}")

    # Load tokenizer
    print("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(args.model_name)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    print("Tokenizer loaded successfully.")

    # Define padding_idx and input dimension based on tokenizer
    padding_idx = tokenizer.pad_token_id
    input_dim = len(tokenizer)

    # Initialize the Transformer model on GPU
    print("Initializing Transformer model...")
    model_transformer = Transformer(
        input_dim=input_dim,
        d_model=128,
        num_heads=4,
        num_layers=4,
        d_ff=256,
        num_experts=2,
        output_dim=input_dim,
        dropout=0.1,
        top_k=2
    ).to(device)
    model_transformer.train()
    print("Transformer model initialized on device.")

    # Define model parameters (adjusted for speed)
    d_model = 128
    state_dim = 128
    action_dim = d_model
    hidden_dim = 256
    vocab_dim = input_dim
    embed_dim = d_model

    # Define World Model components
    representation_network = RepresentationNetwork(vocab_dim, d_model, state_dim).to(device)
    dynamics_network = DynamicsNetwork(state_dim, action_dim, hidden_dim).to(device)
    prediction_network = PredictionNetwork(state_dim, input_dim, 1).to(device)
    action_encoder = ActionEncoder(input_dim, action_dim).to(device)

    # Initialize PPO Agent
    ppo_agent = PPOAgent(
        policy_network=prediction_network,
        optimizer=optim.AdamW(prediction_network.parameters(), lr=args.learning_rate),
        clip_epsilon=0.2,
        entropy_coef=0.01,
        value_coef=0.5
    )

    # Bundle World Model components
    world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer)

    print(f"Current mode: {args.mode}")
    if args.mode == 'train':
        print("Loading and preprocessing data...")
        train_loader, eval_loader = load_data(args, tokenizer)
        print("Data loaded and preprocessed successfully.")

        # Optimizer and Scheduler
        optimizer = optim.AdamW(
            list(representation_network.parameters()) +
            list(dynamics_network.parameters()) +
            list(prediction_network.parameters()) +
            list(action_encoder.parameters()),
            lr=args.learning_rate, weight_decay=args.weight_decay
        ) if args.train_mode == 'world_model' else optim.AdamW(model_transformer.parameters(), lr=args.learning_rate)
        scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
        scaler = GradScaler()

        print(f"Starting {args.train_mode} training...")

        for epoch in range(args.num_epochs):
            if args.train_mode == 'world_model':
                avg_loss = train_epoch_world_model(
                    world_model_components,
                    train_loader,
                    optimizer,
                    scheduler,
                    scaler,
                    args,
                    model_transformer,
                    state_dim,
                    embed_dim,
                    input_dim
                )
            else:
                avg_loss = train_epoch_language_model(
                    model_transformer,
                    train_loader,
                    optimizer,
                    scheduler,
                    scaler,
                    args
                )

            print(f"{args.train_mode.capitalize()} training epoch {epoch + 1} completed. Average loss: {avg_loss:.4f}")

            if args.train_mode == 'world_model':
                save_all_models(model_transformer, representation_network, dynamics_network, prediction_network, action_encoder, args.save_dir, epoch + 1)
                print(f"Models saved for epoch {epoch + 1}")
            else:
                torch.save(model_transformer.state_dict(), os.path.join(args.save_dir, f'language_model_epoch_{epoch + 1}.pt'))
                print(f"Language model saved for epoch {epoch + 1}")

        print("Training completed.")

    elif args.mode == 'inference':
        print("Entering inference mode...")
        # Build Tree of Thought if needed
        print("Building Tree of Thought...")
        tree_root = build_tree_of_thought()
        print("Tree of Thought built successfully.")

        # Generate action list
        print("Generating action list...")
        action_list = []
        traverse_tree(tree_root, action_list)
        print(f"Action list generated. Total actions: {len(action_list)}")

        # Create mappings
        global action_to_index, index_to_action
        action_to_index = {action: idx for idx, action in enumerate(action_list)}
        index_to_action = {idx: action for action, idx in action_to_index.items()}
        action_vocab_size = len(action_list)
        print(f"Action mappings created. Vocabulary size: {action_vocab_size}")

        # Initialize or load models based on the load_model argument
        if args.load_model:
            print(f"Loading saved model from {args.load_model}")
            # Load the saved models
            model_transformer.load_state_dict(torch.load(os.path.join(args.load_model, 'transformer_model.pt')))
            representation_network.load_state_dict(torch.load(os.path.join(args.load_model, 'representation_network.pt')))
            dynamics_network.load_state_dict(torch.load(os.path.join(args.load_model, 'dynamics_network.pt')))
            
            # Load prediction network and adjust its size if necessary
            saved_state_dict = torch.load(os.path.join(args.load_model, 'prediction_network.pt'))
            saved_vocab_size = saved_state_dict['policy_head.weight'].size(0)
            if saved_vocab_size != action_vocab_size:
                print(f"Adjusting prediction network size from {saved_vocab_size} to {action_vocab_size}")
                prediction_network = PredictionNetwork(state_dim, saved_vocab_size, 1).to(device)
                prediction_network.load_state_dict(saved_state_dict)
                prediction_network.policy_head = nn.Linear(prediction_network.state_dim, action_vocab_size).to(device)
            else:
                prediction_network = PredictionNetwork(state_dim, action_vocab_size, 1).to(device)
                prediction_network.load_state_dict(saved_state_dict)

            action_encoder.load_state_dict(torch.load(os.path.join(args.load_model, 'action_encoder.pt')))
        else:
            print("Using newly initialized models")

        # Prepare the components
        world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer)

        print("Starting inference loop...")
        while True:
            if args.query:
                query = args.query
                args.query = None  # Reset query for next iteration
            else:
                query = input("Please enter your query (or type 'exit' to quit): ")
                if query.lower() == 'exit':
                    break

            print(f"Processing query: {query}")
            result = infer(query, world_model_components, tree_root, tokenizer, 
                          max_length=args.max_length,
                          inference_mode=args.inference_mode, 
                          beam_size=args.beam_size, 
                          n_tokens_predict=args.n_tokens_predict,
                          mcts_iterations=args.mcts_iterations,
                          exploration_constant=args.mcts_exploration_constant)


            if args.inference_mode == 'without_world_model':
                print("Generated Text:")
                print(result)
            else:
                print("Generated Thought Sequence:")
                for thought in result:
                    print(thought)

            print("\n")  # Add a newline for better readability between queries

        print("Inference completed.")
    
    else:
        print(f"Invalid mode: {args.mode}. Please choose 'train' or 'inference'.")

if __name__ == '__main__':
    main()