File size: 9,466 Bytes
e1392d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# ToTSearch.py
import random
from typing import List, Dict, Any, Generator
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
from twisted.internet import defer
from agent import AutonomousWebAgent
from mcts import MCTS, MCTSNode
import logging
from twisted.internet.defer import Deferred


logger = logging.getLogger(__name__)

class ToTNode:
    def __init__(self, thought, parent=None):
        self.thought = thought
        self.parent = parent
        self.children = []
        self.visits = 0
        self.value = 0
        self.search_results = []
        self.mcts_node = None

    def add_child(self, child_thought):
        child = ToTNode(child_thought, self)
        self.children.append(child)
        return child

    def update(self, reward):
        self.visits += 1
        self.value += reward

class ToTSearch:
    def __init__(self, agent: AutonomousWebAgent, model='all-MiniLM-L6-v2', max_depth=3, num_thoughts=3, num_simulations=100):
        self.agent = agent
        self.model = SentenceTransformer(model)
        self.max_depth = max_depth
        self.num_thoughts = num_thoughts
        self.num_simulations = num_simulations
        self.mcts = MCTS(initial_state="", num_simulations=num_simulations)

    def generate_thoughts(self, query: str) -> List[str]:
        prompt = f"""Given the query "{query}", generate {self.num_thoughts} distinct thoughts or approaches to address it.

        Each thought should be a complete sentence and offer a unique perspective or solution path."""
        
        thoughts = self.agent.generate_text(prompt).split('\n')
        return [thought.strip() for thought in thoughts if thought.strip()]

    def expand_thought(self, thought: str) -> List[str]:
        prompt = f"""Expand on the following thought: "{thought}"

        Generate {self.num_thoughts} more specific sub-thoughts or considerations.

        Each sub-thought should be a complete sentence and offer additional detail or a new angle."""
        
        expansions = self.agent.generate_text(prompt).split('\n')
        return [exp.strip() for exp in expansions if exp.strip()]

    def evaluate_thought(self, thought: str, query: str) -> float:
        thought_embedding = self.model.encode(thought)
        query_embedding = self.model.encode(query)
        return util.pytorch_cos_sim(thought_embedding, query_embedding).item()

    @defer.inlineCallbacks
    def search_and_augment(self, thought: str) -> Generator[Deferred, Any, List[Dict[str, Any]]]:
        search_results = yield self.agent.retrieve_from_web(thought)
        for result in search_results:
            result['originating_thought'] = thought
        defer.returnValue(search_results)

    def select(self, node: ToTNode) -> ToTNode:
        while node.children:
            # Choose a node with zero visits or select based on the value/visits ratio
            if any(child.visits == 0 for child in node.children):
                zero_visit_nodes = [child for child in node.children if child.visits == 0]
                selected_node = random.choice(zero_visit_nodes)
                logger.debug(f"Selected node with 0 visits: {selected_node.thought}")
                return selected_node
            else:
                selected_node = max(node.children, key=lambda child: (child.value / child.visits) if child.visits > 0 else float('-inf'))
                logger.debug(f"Selected node based on value/visits ratio: {selected_node.thought}, value: {selected_node.value}, visits: {selected_node.visits}")
                return selected_node
        return node


    def expand(self, node: ToTNode, query: str) -> ToTNode:
        if not node.children and len(node.thought.split()) > 2:
            expansions = self.expand_thought(node.thought)
            for expansion in expansions:
                node.add_child(expansion)
        return random.choice(node.children) if node.children else node

    @defer.inlineCallbacks
    def simulate(self, node: ToTNode, query: str):
        current_node = node
        depth = 0
        while depth < self.max_depth:
            if not current_node.children:
                break
            current_node = random.choice(current_node.children)
            depth += 1
        
        logger.debug(f"Simulating for thought: {current_node.thought}")
        
        search_results = yield self.search_and_augment(current_node.thought)
        current_node.search_results = search_results
        
        logger.debug(f"Search results count: {len(search_results)}")
        
        ranked_results = self.agent.calculate_reward(current_node.thought, query)
        logger.debug(f"Ranked results: {ranked_results}")
        
        mcts_node = MCTSNode(current_node.thought)
        current_node.mcts_node = mcts_node
        mcts_total_reward = 0
        
        for _ in range(self.num_simulations):
            mcts_reward = yield self.mcts.simulate(mcts_node)
            mcts_total_reward += mcts_reward
            self.mcts.backpropagate(mcts_node, mcts_reward)
        
        logger.debug(f"MCTS node visits: {mcts_node.visits}, total reward: {mcts_total_reward}")
        
        if mcts_node.visits == 0 or ranked_results == 0:
            logger.warning(f"Avoiding division by zero. MCTS visits: {mcts_node.visits}, Ranked results: {ranked_results}")
            combined_reward = 0
        else:
            combined_reward = (ranked_results + mcts_value) / 2

        if mcts_node.visits > 0:
            mcts_value = mcts_total_reward / mcts_node.visits
            logger.debug(f"MCTS value: {mcts_value}")
        else:
            mcts_value = 0
            logger.warning(f"MCTS node has 0 visits, assigning value 0")
        
        combined_reward = (ranked_results + mcts_value) / 2
        logger.debug(f"Combined reward: {combined_reward}")
        
        defer.returnValue(combined_reward)

    def backpropagate(self, node: ToTNode, reward: float):
        while node:
            node.update(reward)
            node = node.parent

    @defer.inlineCallbacks
    def tot_search(self, query: str) -> Generator[Deferred, Any, ToTNode]:
        root = ToTNode(query)
        for _ in range(self.num_simulations):
            node = self.select(root)
            node = self.expand(node, query)
            reward = yield self.simulate(node, query)
            self.backpropagate(node, reward)
            
            # Update agent's experience replay
            state = self.agent.extract_features(node.thought, query)
            next_state = self.agent.extract_features(node.children[0].thought if node.children else node.thought, query)
            self.agent.remember_worker(state, 0, reward, next_state, False)
            
            # Perform agent's replay to update RL models
            self.agent.replay_worker()
            self.agent.replay_manager()
        
        defer.returnValue(root)

    def get_best_path(self, root: ToTNode) -> List[str]:
        path = [root.thought]
        current = root
        while current.children:
            current = max(current.children, key=lambda child: child.value / child.visits if child.visits > 0 else float('-inf'))
            path.append(current.thought)
        return path

    @defer.inlineCallbacks
    def synthesize_results(self, root: ToTNode, query: str) -> Generator[Deferred, Any, str]:
        best_path = self.get_best_path(root)
        all_results = []
        
        def collect_results(node):
            all_results.extend(node.search_results)
            for child in node.children:
                collect_results(child)
        
        collect_results(root)
        
        # Sort results by relevance
        all_results.sort(key=lambda x: self.evaluate_thought(x['content'], query), reverse=True)
        
        # Generate a summary of the top results
        top_results = all_results[:5]  # Adjust the number as needed
        summary_prompt = f"Synthesize the following information into a coherent answer for the query '{query}':\n\n"
        summary_prompt += f"Thought path: {' -> '.join(best_path)}\n\n"
        for result in top_results:
            summary_prompt += f"- {result['content'][:200]}...\n"
        
        # Use the agent's RAG capabilities for final answer generation
        final_answer = yield self.agent.generate_rag_response(query, top_results)
        
        # Save the generated answer and thought path to the agent's knowledge base
        self.agent.add_document_to_kb(
            title=f"ToT Search Result: {query}",
            content=final_answer,
            metadata={"thought_path": best_path}
        )
        
        defer.returnValue(final_answer)

    @defer.inlineCallbacks
    def search(self, query: str) -> Generator[Deferred, Any, str]:
        logger.info(f"Starting ToT search for query: {query}")
        root = yield self.tot_search(query)
        final_answer = yield self.synthesize_results(root, query)
        logger.info(f"ToT search completed for query: {query}")
        defer.returnValue(final_answer)

# Usage example:
# tot_search = ToTSearch(agent)
# final_answer = yield tot_search.search("What are the latest advancements in renewable energy?")