lightbulb / lightbulb_wm.py
RobbiePasquale's picture
Upload lightbulb_wm.py
904b97c verified
raw
history blame
54.6 kB
import argparse
import math
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader
import copy
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.amp import autocast, GradScaler
from datasets import load_dataset
from transformers import AutoTokenizer
# Set the device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def parse_args():
parser = argparse.ArgumentParser(description='Train World Model with Transformer outputs.')
parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
parser.add_argument('--batch_size', type=int, default=2, help='Batch size')
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
parser.add_argument('--mcts_iterations', type=int, default=5, help='Number of MCTS Iterations')
parser.add_argument('--mcts_exploration_constant', type=float, default=1.414, help='Learning rate')
parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
parser.add_argument('--transformer_model_path', type=str, required=True, help='Path to the saved Transformer model')
args = parser.parse_args()
return args
def load_data(args, tokenizer):
# Load the dataset
dataset = load_dataset(args.dataset_name, args.dataset_config)
# Ensure the tokenizer has a padding token
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
def tokenize_function(examples):
return tokenizer(examples['text'], truncation=True, max_length=args.max_length)
tokenized_datasets = dataset.map(
tokenize_function,
batched=True,
num_proc=4,
remove_columns=dataset['train'].column_names,
)
# Build inputs and labels for language modeling
block_size = args.max_length
def group_texts(examples):
# Concatenate all texts
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples['input_ids'])
# We drop the small remainder
total_length = (total_length // block_size) * block_size
# Split by chunks of block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result['labels'] = result['input_ids'].copy()
return result
lm_datasets = tokenized_datasets.map(
group_texts,
batched=True,
num_proc=4,
)
# Create DataLoader
train_dataset = lm_datasets['train']
eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']
data_collator = lambda data: {
'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
}
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=data_collator)
eval_loader = DataLoader(eval_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator)
return train_loader, eval_loader
def save_all_models(transformer_model, representation_network, dynamics_network, prediction_network, action_encoder, save_dir, epoch):
"""
Save all models to the specified directory.
Args:
transformer_model (nn.Module): Transformer model.
representation_network (nn.Module): Representation network.
dynamics_network (nn.Module): Dynamics network.
prediction_network (nn.Module): Prediction network.
action_encoder (nn.Module): Action encoder.
save_dir (str): Directory to save the models.
epoch (int): Current epoch number.
"""
os.makedirs(save_dir, exist_ok=True)
torch.save(transformer_model.state_dict(), os.path.join(save_dir, f'transformer_model_epoch_{epoch}.pt'))
torch.save(representation_network.state_dict(), os.path.join(save_dir, f'representation_network_epoch_{epoch}.pt'))
torch.save(dynamics_network.state_dict(), os.path.join(save_dir, f'dynamics_network_epoch_{epoch}.pt'))
torch.save(prediction_network.state_dict(), os.path.join(save_dir, f'prediction_network_epoch_{epoch}.pt'))
torch.save(action_encoder.state_dict(), os.path.join(save_dir, f'action_encoder_epoch_{epoch}.pt'))
print(f"All models saved for epoch {epoch}.")
class RotaryPositionalEncoding(nn.Module):
def __init__(self, d_model):
super(RotaryPositionalEncoding, self).__init__()
inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
self.register_buffer('inv_freq', inv_freq)
def forward(self, x):
seq_len, batch_size, _ = x.size()
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
sin = sinusoid_inp.sin().unsqueeze(1) # (seq_len, 1, d_model/2)
cos = sinusoid_inp.cos().unsqueeze(1) # (seq_len, 1, d_model/2)
x1 = x[..., 0::2]
x2 = x[..., 1::2]
# Apply rotation
x_rotated = torch.zeros_like(x)
x_rotated[..., 0::2] = x1 * cos - x2 * sin
x_rotated[..., 1::2] = x1 * sin + x2 * cos
return x_rotated
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
self.d_k = d_model // num_heads
self.num_heads = num_heads
self.linear_q = nn.Linear(d_model, d_model)
self.linear_k = nn.Linear(d_model, d_model)
self.linear_v = nn.Linear(d_model, d_model)
self.linear_out = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
batch_size = query.size(0)
query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e4)
attn = F.softmax(scores, dim=-1)
output = torch.matmul(attn, value)
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
return self.linear_out(output)
class MoE(nn.Module):
def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
super(MoE, self).__init__()
self.num_experts = num_experts
self.top_k = top_k
self.experts = nn.ModuleList([
nn.Sequential(
nn.Linear(d_model, d_ff),
nn.GELU() if i % 2 == 0 else nn.SiLU(),
nn.Linear(d_ff, d_model)
)
for i in range(num_experts)
])
self.gate = nn.Linear(d_model, num_experts)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
batch_size, seq_len, d_model = x.size()
# Compute gating scores
gate_scores = self.gate(x) # (batch_size, seq_len, num_experts)
top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1) # (batch_size, seq_len, top_k)
top_k_scores = F.softmax(top_k_scores, dim=-1) # (batch_size, seq_len, top_k)
# Initialize output
output = torch.zeros_like(x)
# Flatten batch and sequence dimensions
x_flat = x.view(-1, d_model) # (batch_size * seq_len, d_model)
output_flat = output.view(-1, d_model)
top_k_indices_flat = top_k_indices.view(-1, self.top_k) # (batch_size * seq_len, top_k)
top_k_scores_flat = top_k_scores.view(-1, self.top_k) # (batch_size * seq_len, top_k)
for k in range(self.top_k):
expert_idx_flat = top_k_indices_flat[:, k] # (batch_size * seq_len)
expert_scores_flat = top_k_scores_flat[:, k] # (batch_size * seq_len)
for e in range(self.num_experts):
mask = (expert_idx_flat == e) # Boolean mask
if mask.any():
x_masked = x_flat[mask] # Select tokens for expert e
expert_output = self.experts[e](x_masked) # Apply expert e
output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output
output = output_flat.view(batch_size, seq_len, d_model)
return self.dropout(output)
class TransformerBlock(nn.Module):
def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
super(TransformerBlock, self).__init__()
self.self_attention = MultiHeadAttention(d_model, num_heads)
self.norm1 = nn.LayerNorm(d_model)
self.cross_attention = MultiHeadAttention(d_model, num_heads)
self.norm2 = nn.LayerNorm(d_model)
self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
self.norm3 = nn.LayerNorm(d_model)
def forward(self, x, mask=None, enc_output=None, enc_mask=None):
# Self-attention
attn_output = self.self_attention(x, x, x, mask)
x = self.norm1(x + attn_output)
# Cross-attention (only in decoder)
if enc_output is not None:
cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
x = self.norm2(x + cross_attn_output)
# Feedforward/MoE
moe_output = self.moe(x)
return self.norm3(x + moe_output)
class Transformer(nn.Module):
def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
super(Transformer, self).__init__()
self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
self.encoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.decoder_layers = nn.ModuleList(
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
)
self.output_layer = nn.Linear(d_model, output_dim)
self.d_model = d_model
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
# Encoder
src = self.embedding(src) * math.sqrt(self.d_model)
src = src.transpose(0, 1) # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
src = self.rotary_positional_encoding(src)
src = src.transpose(0, 1) # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model)
for layer in self.encoder_layers:
src = layer(src, src_mask)
# Decoder
tgt = self.embedding(tgt) * math.sqrt(self.d_model)
tgt = tgt.transpose(0, 1)
tgt = self.rotary_positional_encoding(tgt)
tgt = tgt.transpose(0, 1)
for layer in self.decoder_layers:
tgt = layer(tgt, tgt_mask, src, src_mask)
output = self.output_layer(tgt)
return output
def generate(self, src, tokenizer, max_length=20, temperature=1.0):
"""
Generate sequences using differentiable sampling (Gumbel-Softmax).
Args:
src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)
tokenizer (transformers.PreTrainedTokenizer): Tokenizer to access special tokens
max_length (int): Maximum length of the generated sequence
temperature (float): Temperature parameter for Gumbel-Softmax
Returns:
torch.Tensor: Generated sequences of shape (batch_size, max_length)
torch.Tensor: Entropy values for each time step
torch.Tensor: Variance values for each time step
"""
batch_size = src.size(0)
# Encode the source
src_enc = self.embedding(src) * math.sqrt(self.d_model)
src_enc = src_enc.transpose(0, 1)
src_enc = self.rotary_positional_encoding(src_enc)
src_enc = src_enc.transpose(0, 1)
for layer in self.encoder_layers:
src_enc = layer(src_enc)
# Initialize decoder input with <sos> tokens
tgt_seq = torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=src.device)
entropies = []
variances = []
for _ in range(max_length):
tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_emb = self.rotary_positional_encoding(tgt_emb)
tgt_emb = tgt_emb.transpose(0, 1)
tgt_dec = tgt_emb
for layer in self.decoder_layers:
tgt_dec = layer(tgt_dec, None, src_enc, None)
output = self.output_layer(tgt_dec) # (batch_size, seq_len, vocab_size)
logits = output[:, -1, :] # Get logits for the last time step
# Compute token probabilities
probs = F.softmax(logits / temperature, dim=-1) # (batch_size, vocab_size)
# Compute entropy
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size)
entropies.append(entropy)
# Sample token using Gumbel-Softmax
gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + 1e-9) + 1e-9)
y = (logits + gumbel_noise) / temperature
y = F.softmax(y, dim=-1) # (batch_size, vocab_size)
# Compute variance
variance = torch.var(y, dim=-1) # (batch_size)
variances.append(variance)
# Get token indices (argmax for hard selection)
next_tokens = torch.argmax(y, dim=-1, keepdim=True) # (batch_size, 1)
tgt_seq = torch.cat([tgt_seq, next_tokens], dim=1)
# Stack entropies and variances
entropies = torch.stack(entropies, dim=1) # (batch_size, max_length)
variances = torch.stack(variances, dim=1) # (batch_size, max_length)
return tgt_seq[:, 1:], entropies, variances # Exclude the initial <sos> token
# Objective Functions
class InfoNCE_Loss(nn.Module):
def __init__(self, temperature=0.07):
super(InfoNCE_Loss, self).__init__()
self.temperature = temperature
self.cross_entropy = nn.CrossEntropyLoss()
def forward(self, z_i, z_j):
"""
Args:
z_i (torch.Tensor): Flattened representations from view i, shape (2n, embed_dim)
z_j (torch.Tensor): Flattened representations from view j, shape (2n, embed_dim)
Returns:
torch.Tensor: InfoNCE loss
"""
n = z_i.size(0)
z = torch.cat([z_i, z_j], dim=0) # Shape: (2n, embed_dim)
z = F.normalize(z, dim=1)
similarity_matrix = torch.matmul(z, z.T) # Shape: (2n, 2n)
# Create a mask to exclude self-similarity
mask = torch.eye(2 * n, device=z.device, dtype=torch.bool)
similarity_matrix = similarity_matrix.masked_fill(mask, -1e4) # Use a manageable negative value
# Create labels for contrastive learning
labels = torch.arange(n, device=z.device)
labels = torch.cat([labels + n, labels], dim=0) # Shape: (2n,)
# Apply temperature scaling
similarity_matrix /= self.temperature
# Compute cross-entropy loss
loss = self.cross_entropy(similarity_matrix, labels)
return loss
class CovarianceRegularization(nn.Module):
def __init__(self, lambda_reg=1e-3):
super(CovarianceRegularization, self).__init__()
self.lambda_reg = lambda_reg
def forward(self, embeddings):
"""
Args:
embeddings (torch.Tensor): Embedding tensor, shape (batch_size, embed_dim)
Returns:
torch.Tensor: Covariance regularization loss
"""
batch_size, embed_dim = embeddings.size()
mean = embeddings.mean(dim=0)
embeddings_centered = embeddings - mean
cov = (embeddings_centered.T @ embeddings_centered) / (batch_size - 1)
cov_loss = torch.sum(cov ** 2) - torch.sum(torch.diag(cov) ** 2)
return self.lambda_reg * cov_loss
class DynamicsPerformanceLoss(nn.Module):
def __init__(self, lambda_var=1e-3):
super(DynamicsPerformanceLoss, self).__init__()
self.lambda_var = lambda_var
def forward(self, true_next_state, predicted_next_state):
"""
Args:
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
Returns:
torch.Tensor: Dynamics performance loss
"""
mse_loss = F.mse_loss(predicted_next_state, true_next_state)
variance_loss = torch.var(predicted_next_state, dim=0).mean()
return mse_loss + self.lambda_var * variance_loss
class ThoughtConsistencyLoss(nn.Module):
def __init__(self):
super(ThoughtConsistencyLoss, self).__init__()
def forward(self, true_next_state, perturbed_next_state):
"""
Args:
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
perturbed_next_state (torch.Tensor): Perturbed next state, shape (batch_size, state_dim)
Returns:
torch.Tensor: Thought-consistency loss
"""
return F.mse_loss(true_next_state, perturbed_next_state)
class PolicyValueJointLoss(nn.Module):
def __init__(self, lambda_value=0.5):
super(PolicyValueJointLoss, self).__init__()
self.lambda_value = lambda_value
self.cross_entropy = nn.CrossEntropyLoss()
self.mse_loss = nn.MSELoss()
def forward(self, policy_logits, true_policy, value_pred, true_value):
"""
Args:
policy_logits (torch.Tensor): Logits from the policy network, shape (batch_size * seq_len, num_actions)
true_policy (torch.Tensor): Ground truth policy, shape (batch_size * seq_len, num_actions)
value_pred (torch.Tensor): Predicted values, shape (batch_size * seq_len)
true_value (torch.Tensor): Ground truth values, shape (batch_size * seq_len)
Returns:
torch.Tensor: Combined policy and value loss
"""
policy_logits = policy_logits.view(-1, policy_logits.size(-1))
true_policy = true_policy.view(-1, true_policy.size(-1))
value_pred = value_pred.view(-1)
true_value = true_value.view(-1)
policy_loss = self.cross_entropy(policy_logits, true_policy.argmax(dim=1))
value_loss = self.mse_loss(value_pred, true_value)
return policy_loss + self.lambda_value * value_loss
class ActionDiversityReward(nn.Module):
def __init__(self, lambda_div=1e-3):
super(ActionDiversityReward, self).__init__()
self.lambda_div = lambda_div
def forward(self, action_embeddings):
"""
Args:
action_embeddings (torch.Tensor): Embeddings of actions, shape (batch_size, embed_dim)
Returns:
torch.Tensor: Action diversity loss
"""
similarity_matrix = F.cosine_similarity(action_embeddings.unsqueeze(1), action_embeddings.unsqueeze(0), dim=2)
# Zero out self-similarity
similarity_matrix = similarity_matrix - torch.eye(similarity_matrix.size(0)).to(action_embeddings.device)
diversity_loss = torch.sum(similarity_matrix ** 2)
return self.lambda_div * diversity_loss
class ExpectedThoughtValueLoss(nn.Module):
def __init__(self):
super(ExpectedThoughtValueLoss, self).__init__()
def forward(self, mcts_best_values):
"""
Args:
mcts_best_values (torch.Tensor): Best values from MCTS, shape (batch_size)
Returns:
torch.Tensor: ETV loss
"""
return -mcts_best_values.mean()
class ExplorationRegularization(nn.Module):
def __init__(self, lambda_expl=1e-3):
super(ExplorationRegularization, self).__init__()
self.lambda_expl = lambda_expl
def forward(self, visit_counts):
"""
Args:
visit_counts (torch.Tensor): Visit counts for actions, shape (batch_size, num_actions)
Returns:
torch.Tensor: Exploration regularization loss
"""
reward = torch.sum(1.0 / (visit_counts + 1), dim=-1)
return self.lambda_expl * reward.mean()
class KL_DivergenceLoss(nn.Module):
def __init__(self):
super(KL_DivergenceLoss, self).__init__()
def forward(self, old_policy, new_policy):
"""
Args:
old_policy (torch.Tensor): Old policy probabilities, shape (batch_size, num_actions)
new_policy (torch.Tensor): New policy probabilities, shape (batch_size, num_actions)
Returns:
torch.Tensor: KL divergence loss
"""
kl_div = F.kl_div(new_policy.log(), old_policy, reduction='batchmean')
return kl_div
# MuZero
class ActionEncoder(nn.Module):
def __init__(self, vocab_size, embed_dim):
super(ActionEncoder, self).__init__()
self.embedding = nn.Embedding(vocab_size, embed_dim)
def forward(self, action_sequences):
"""
Args:
action_sequences (torch.Tensor): Tensor of shape (batch_size, seq_len)
Returns:
torch.Tensor: Encoded actions of shape (batch_size, seq_len, embed_dim)
"""
return self.embedding(action_sequences) #.half() # Convert to half-precision
class RepresentationNetwork(nn.Module):
def __init__(self, vocab_dim, d_model, state_dim):
super(RepresentationNetwork, self).__init__()
self.proj = nn.Linear(vocab_dim, d_model) # Project from vocab_dim to d_model
self.linear = nn.Linear(d_model, state_dim) # Project from d_model to state_dim
self.norm = nn.LayerNorm(state_dim)
def forward(self, transformer_output):
"""
Args:
transformer_output (torch.Tensor): Shape (batch_size, seq_len, vocab_dim)
Returns:
torch.Tensor: Encoded state of shape (batch_size, seq_len, state_dim)
"""
# First project down from vocab_dim to d_model
projected_output = self.proj(transformer_output)
# Then project down from d_model to state_dim
state = self.linear(projected_output)
state = self.norm(state)
return state
class DynamicsNetwork(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim):
super(DynamicsNetwork, self).__init__()
self.rms_norm = nn.LayerNorm(state_dim)
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
self.activation = nn.GELU()
self.fc2 = nn.Linear(hidden_dim, state_dim)
def forward(self, state, action):
"""
Args:
state (torch.Tensor): Current state, shape (batch_size, seq_len, state_dim)
action (torch.Tensor): Action embedding, shape (batch_size, seq_len, action_dim)
Returns:
torch.Tensor: Predicted next state, shape (batch_size, seq_len, state_dim)
"""
norm_state = self.rms_norm(state)
combined = torch.cat([norm_state, action], dim=-1)
hidden = self.activation(self.fc1(combined))
next_state = self.fc2(hidden)
return next_state
class PredictionNetwork(nn.Module):
def __init__(self, state_dim, policy_dim, value_dim):
super(PredictionNetwork, self).__init__()
self.state_dim = state_dim
self.rms_norm = nn.LayerNorm(state_dim)
self.policy_head = nn.Linear(state_dim, policy_dim)
self.value_head = nn.Linear(state_dim, value_dim)
def forward(self, state):
"""
Args:
state (torch.Tensor): Predicted state, shape (batch_size, seq_len, state_dim)
Returns:
Tuple[torch.Tensor, torch.Tensor]: Policy logits and value estimates
"""
norm_state = self.rms_norm(state)
policy_logits = self.policy_head(norm_state)
value_estimates = self.value_head(norm_state)
return policy_logits, value_estimates
class MCTSNode:
def __init__(self, state, parent=None, action=None):
"""
Initialize an MCTS node.
Args:
state (State): The current state representation.
parent (MCTSNode, optional): The parent node. Defaults to None.
action (int, optional): The action taken to reach this node. Defaults to None.
"""
self.state = state # Instance of State class
self.parent = parent # Parent MCTSNode
self.action = action # Action taken to reach this node
self.children = {} # Dict mapping actions to MCTSNode
self.visit_count = 0
self.value_sum = 0.0
self.prior = 0.0 # Prior probability from policy network
def expand(self, actions, priors):
"""
Expand the node with possible actions and their priors.
Args:
actions (list): List of possible actions (action indices).
priors (list): List of prior probabilities corresponding to actions.
"""
for action, prior in zip(actions, priors):
if action not in self.children:
child_state = self.state.apply_action(action) # Apply action to get new state
child_node = MCTSNode(state=child_state, parent=self, action=action)
child_node.prior = float(prior) # Ensure that prior is a float value
self.children[action] = child_node
def is_leaf(self):
"""
Check if the node is a leaf node (i.e., has no children).
Returns:
bool: True if leaf, False otherwise.
"""
return len(self.children) == 0
def ucb_score(self, total_visits, exploration_constant=math.sqrt(2)):
"""
Calculate the UCB (Upper Confidence Bound) score for the node.
Args:
total_visits (int): Total number of visits to the parent node.
exploration_constant (float, optional): Exploration parameter. Defaults to math.sqrt(2).
Returns:
float: The UCB score.
"""
if self.visit_count == 0:
return float('inf')
average_value = self.value_sum / self.visit_count
exploration_term = exploration_constant * self.prior * math.sqrt(total_visits) / (1 + self.visit_count)
return average_value + exploration_term
class MCTS:
def __init__(self, prediction_network, dynamics_network, action_encoder, num_iterations=10, exploration_constant=math.sqrt(2)):
"""
Initialize the MCTS.
Args:
prediction_network (nn.Module): The Prediction Network.
dynamics_network (nn.Module): The Dynamics Network.
num_iterations (int): Number of MCTS iterations per search.
exploration_constant (float): Exploration parameter for UCB.
"""
self.action_encoder = action_encoder
self.prediction_network = prediction_network
self.dynamics_network = dynamics_network
self.num_iterations = num_iterations
self.exploration_constant = exploration_constant
def search(self, root_state):
"""
Perform MCTS starting from the root_state.
Args:
root_state: The initial state from which to start MCTS.
Returns:
The best action determined by MCTS.
"""
self.root = MCTSNode(state=root_state)
for _ in range(self.num_iterations):
node = self.select(self.root)
value = self.evaluate(node)
self.backpropagate(node, value)
return self.best_action()
def select(self, node):
"""
Traverse the tree to select a node for evaluation.
Args:
node: The starting node for selection.
Returns:
The node selected for evaluation.
"""
while not node.is_leaf():
best_action, best_node = max(node.children.items(),
key=lambda item: item[1].ucb_score(node.visit_count, self.exploration_constant))
node = best_node
return node
def evaluate(self, node):
"""
Evaluate the node by expanding it and predicting its value.
Args:
node: The node to evaluate.
Returns:
The value estimate of the node.
"""
# Use the prediction network to get policy logits and value estimate
policy_logits, value_estimate = self.prediction_network(node.state.representation)
# Convert logits to probabilities
policy = F.softmax(policy_logits, dim=-1).detach().cpu().numpy()
# Expand the node with possible actions and their priors
actions = list(range(policy.shape[-1])) # Assuming actions are indexed from 0 to num_actions-1
priors = policy[0].flatten().tolist() # Convert to a 1D list of floats
node.expand(actions, priors)
return value_estimate.mean().item()
def backpropagate(self, node, value):
"""
Backpropagate the value up the tree.
Args:
node: The node to start backpropagation from.
value (float): The value to backpropagate.
"""
while node is not None:
node.visit_count += 1
node.value_sum += value
node = node.parent
def best_action(self):
"""
Choose the action with the highest visit count.
Returns:
The best action.
"""
best_child = max(self.root.children.values(), key=lambda n: n.visit_count)
return best_child.action
class State:
def __init__(self, representation, dynamics_network, action_encoder):
"""
Initialize the State.
Args:
representation (torch.Tensor): Encoded state representation, shape (batch_size, seq_len, state_dim)
dynamics_network (nn.Module): The Dynamics Network to predict next states
action_encoder (nn.Module): The Action Encoder to encode actions
"""
self.representation = representation # Shape: (batch_size, seq_len, state_dim)
self.dynamics_network = dynamics_network # Reference to Dynamics Network
self.action_encoder = action_encoder
def apply_action(self, action):
"""
Apply an action to the current state to get a new state.
Args:
action (int): The action to apply (e.g., token index)
Returns:
State: The new state after applying the action
"""
# Create action sequence filled with action index
batch_size, seq_len, _ = self.representation.size()
action_sequence = torch.full((batch_size, seq_len), action, dtype=torch.long, device=self.representation.device)
# Encode action
action_embedding = self.action_encoder(action_sequence)
# Predict the next state using the Dynamics Network
with torch.no_grad():
next_state_representation = self.dynamics_network(self.representation, action_embedding)
return State(next_state_representation, self.dynamics_network, self.action_encoder)
class PPOAgent:
def __init__(self, policy_network, optimizer, clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5):
self.policy_network = policy_network
self.optimizer = optimizer
self.clip_epsilon = clip_epsilon
self.entropy_coef = entropy_coef
self.value_coef = value_coef
def compute_loss(self, states, old_log_probs, actions, returns, advantages):
# Get policy logits and value estimates
policy_logits, value_estimates = self.policy_network(states)
batch_size, seq_len, num_actions = policy_logits.size()
# Flatten tensors
policy_logits = policy_logits.view(-1, num_actions) # Shape: (batch_size * seq_len, num_actions)
value_estimates = value_estimates.view(-1) # Shape: (batch_size * seq_len)
actions = actions.view(-1) # Shape: (batch_size * seq_len)
old_log_probs = old_log_probs.view(-1) # Shape: (batch_size * seq_len)
returns = returns.view(-1) # Shape: (batch_size * seq_len)
advantages = advantages.view(-1) # Shape: (batch_size * seq_len)
# Compute new log probabilities
new_log_probs_all = F.log_softmax(policy_logits, dim=-1) # Shape: (batch_size * seq_len, num_actions)
new_log_probs = new_log_probs_all.gather(1, actions.unsqueeze(-1)).squeeze(-1) # Shape: (batch_size * seq_len)
# Compute ratios
ratios = torch.exp(new_log_probs - old_log_probs)
# PPO surrogate loss
surr1 = ratios * advantages
surr2 = torch.clamp(ratios, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * advantages
policy_loss = -torch.min(surr1, surr2).mean()
# Value loss
value_loss = F.mse_loss(value_estimates, returns)
# Entropy loss
entropy = -(new_log_probs * torch.exp(new_log_probs)).mean()
# Total loss
total_loss = policy_loss + self.value_coef * value_loss - self.entropy_coef * entropy
return total_loss
def compute_loss_world_model(predicted_next_state, true_next_state, policy_logits, true_policy, value_estimates, true_value,
alpha, beta, temperature, lambda_reg, lambda_var, lambda_div, lambda_expl):
"""
Compute the combined loss for the World Model.
Args:
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
policy_logits (torch.Tensor): Policy logits, shape (batch_size, num_actions)
true_policy (torch.Tensor): Ground truth policy, shape (batch_size, num_actions)
value_estimates (torch.Tensor): Value estimates, shape (batch_size)
true_value (torch.Tensor): Ground truth value, shape (batch_size)
alpha (float): Entropy regularization weight
beta (float): Variance regularization weight
temperature (float): Temperature parameter
lambda_reg (float): Covariance regularization weight
lambda_var (float): Dynamics variance loss weight
lambda_div (float): Action diversity reward weight
lambda_expl (float): Exploration regularization weight
Returns:
torch.Tensor: Combined loss
"""
# Cross-entropy loss
ce_loss = F.cross_entropy(policy_logits, true_policy.argmax(dim=1))
# Entropy loss
probs = F.softmax(policy_logits / temperature, dim=-1) # (batch_size, num_actions)
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size)
entropy_loss = -alpha * torch.mean(entropy)
# Variance loss
variance = torch.var(probs, dim=-1) # (batch_size)
variance_loss = -beta * torch.mean(variance)
# Covariance Regularization
cov_reg = CovarianceRegularization(lambda_reg)(predicted_next_state)
# Dynamics Performance Loss
dynamics_loss = DynamicsPerformanceLoss(lambda_var)(true_next_state, predicted_next_state)
# Thought-Consistency Loss
perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01
thought_loss = ThoughtConsistencyLoss()(true_next_state, perturbed_next_state)
# Policy-Value Joint Loss
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates, true_value)
# Action Diversity Reward
action_embeddings = predicted_next_state # Assuming actions are derived from state
action_diversity = ActionDiversityReward(lambda_div)(action_embeddings)
# Expected Thought Value (ETV) Loss
# Placeholder: Replace with actual MCTS best values
mcts_best_values = torch.zeros(value_estimates.size(0)).to(device)
etv = ExpectedThoughtValueLoss()(mcts_best_values)
# Exploration Regularization
# Placeholder: Replace with actual visit counts
visit_counts = torch.ones(predicted_next_state.size(0), input_dim).to(device)
exploration = ExplorationRegularization(lambda_expl)(visit_counts)
# KL Divergence Regularization
# Placeholder: Replace with actual old and new policies
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Total Loss
total_loss = (
ce_loss +
entropy_loss +
variance_loss +
cov_reg +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss
)
return total_loss
def train_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components
representation_network.train()
dynamics_network.train()
prediction_network.train()
action_encoder.train()
ppo_agent.policy_network.train()
mcts = MCTS(prediction_network, dynamics_network, action_encoder, num_iterations=args.mcts_iterations, exploration_constant=args.mcts_exploration_constant)
total_loss = 0.0
optimizer.zero_grad()
print(f"Starting World Model training epoch with {len(train_loader)} batches...")
for i, batch in enumerate(train_loader):
print(f"Processing batch {i+1}/{len(train_loader)}...")
# Ensure batches are on the appropriate device for the Transformer
src_batch = batch['input_ids'].to('cpu') # Move to CPU for Transformer model
tgt_batch = batch['labels'].to('cpu') # Move to CPU for Transformer model
with autocast(device_type='cuda'):
print("Forward pass through Transformer (frozen)...")
with torch.no_grad():
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
# Move transformer output to the GPU for further processing
transformer_output = transformer_output.to(device)
# Encode actions directly on the GPU
encoded_actions = action_encoder(tgt_batch[:, :-1].to(device)) # Move labels to GPU for encoding
# World Model - Representation
state_representation = representation_network(transformer_output) # On GPU
batch_size, seq_len, _ = state_representation.size()
# Initialize list to collect predicted next states for the batch
predicted_next_states = []
# Iterate over each sample in the batch for MCTS
for b in range(batch_size):
# Create a State instance for the current sample
current_state = State(state_representation[b].unsqueeze(0), dynamics_network, action_encoder)
# Perform MCTS to find the best action
best_action = mcts.search(current_state)
# Create action sequence filled with best_action
action_sequence = torch.full((1, seq_len), best_action, dtype=torch.long, device=device)
# Get action embedding
action_embedding = action_encoder(action_sequence)
# Apply dynamics network
predicted_next_state = dynamics_network(current_state.representation, action_embedding)
predicted_next_states.append(predicted_next_state)
# Concatenate predicted next states to form a batch
predicted_next_state_batch = torch.cat(predicted_next_states, dim=0)
# Prediction Network - Policy logits and value
policy_logits, value_estimates = prediction_network(predicted_next_state_batch)
# Define true_policy and true_value as placeholders on the GPU
true_policy = torch.zeros_like(policy_logits).to(device)
true_value = torch.zeros_like(value_estimates).to(device)
# Compute PPO loss
actions = torch.argmax(policy_logits, dim=-1)
old_log_probs = torch.zeros_like(actions, dtype=torch.float32).to(device)
returns = torch.zeros_like(actions, dtype=torch.float32).to(device)
advantages = torch.zeros_like(actions, dtype=torch.float32).to(device)
# Compute PPO loss using states
ppo_loss = ppo_agent.compute_loss(state_representation, old_log_probs, actions, returns, advantages)
# Compute InfoNCE Loss
z_i = state_representation.view(batch_size * seq_len, state_dim) # Shape: (batch_size * seq_len, state_dim)
z_j = F.dropout(z_i, p=0.1, training=True)
info_nce = InfoNCE_Loss()(z_i, z_j)
# Compute other losses
covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state_batch).to(device), predicted_next_state_batch)
perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state_batch).to(device), perturbed_next_state)
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
action_diversity = ActionDiversityReward()(encoded_actions.view(-1, embed_dim))
mcts_best_values = torch.zeros(actions.size(0)).to(device)
etv = ExpectedThoughtValueLoss()(mcts_best_values)
visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device)
exploration = ExplorationRegularization()(visit_counts)
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Total Loss
loss = (
ppo_loss +
info_nce +
covariance +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss
)
loss = loss / args.accumulation_steps
print("Backward pass...")
scaler.scale(loss).backward()
if (i + 1) % args.accumulation_steps == 0:
print("Gradient clipping...")
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(
[param for group in optimizer.param_groups for param in group['params']],
args.max_grad_norm
)
print("Optimizer step...")
scaler.step(optimizer)
scaler.update()
print("Zeroing gradients...")
optimizer.zero_grad()
print("Updating learning rate...")
scheduler.step()
total_loss += loss.item() * args.accumulation_steps
print(f"Batch {i+1} completed. Current loss: {loss.item():.4f}")
avg_loss = total_loss / len(train_loader)
print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
return avg_loss
def evaluate_world_model(world_model_components, model_transformer, eval_loader, args):
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components
representation_network.eval()
dynamics_network.eval()
prediction_network.eval()
action_encoder.eval()
ppo_agent.policy_network.eval()
total_loss = 0.0
with torch.no_grad():
for batch in eval_loader:
src_batch = batch['input_ids'].to(device)
tgt_batch = batch['labels'].to(device)
# Forward pass through Transformer (on CPU)
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
# Encode actions
encoded_actions = action_encoder(tgt_batch[:, :-1].to(device)) # Move to GPU if necessary
# World Model - Representation
state = representation_network(transformer_output.to(device))
# Dynamics Network - Predict next state
predicted_next_state = dynamics_network(state, encoded_actions)
# Prediction Network - Policy logits and value
policy_logits, value_estimates = prediction_network(predicted_next_state)
# Placeholder: Define true_policy and true_value
# Replace these with actual targets from your environment or dataset
true_policy = torch.zeros_like(policy_logits).to(device)
true_value = torch.zeros_like(value_estimates).to(device)
# Compute PPO loss
# Placeholder: Replace with actual old_log_probs, actions, returns, and advantages
old_log_probs = torch.zeros_like(policy_logits).to(device)
actions = torch.argmax(policy_logits, dim=-1)
returns = torch.zeros(actions.size(0)).to(device)
advantages = torch.zeros(actions.size(0)).to(device)
ppo_loss = ppo_agent.compute_loss(old_log_probs, actions, returns, advantages)
# Compute other losses
info_nce = InfoNCE_Loss()(state, state) # Placeholder: replace with actual positive pairs
covariance = CovarianceRegularization()(predicted_next_state.view(-1, predicted_next_state.size(-1)))
dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state).to(device), predicted_next_state)
perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01
thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state).to(device), perturbed_next_state)
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
action_diversity = ActionDiversityReward()(encoded_actions.view(-1, encoded_actions.size(-1)))
mcts_best_values = torch.zeros(actions.size(0)).to(device) # Placeholder: replace with actual MCTS values
etv = ExpectedThoughtValueLoss()(mcts_best_values)
visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device) # Placeholder: replace with actual visit counts
exploration = ExplorationRegularization()(visit_counts)
old_policy = F.softmax(policy_logits.detach(), dim=-1)
new_policy = F.softmax(policy_logits, dim=-1)
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
# Total Loss
loss = (
ppo_loss +
info_nce +
covariance +
dynamics_loss +
thought_loss +
pv_loss +
action_diversity +
etv +
exploration +
kl_loss
)
total_loss += loss.item()
avg_loss = total_loss / len(eval_loader)
print(f"World Model evaluation completed. Average loss: {avg_loss:.4f}")
return avg_loss
def main():
args = parse_args()
print("Arguments parsed successfully.")
# Create save directory
if not os.path.exists(args.save_dir):
os.makedirs(args.save_dir)
print(f"Save directory created: {args.save_dir}")
# Load tokenizer
print("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
print("Tokenizer loaded successfully.")
# Define padding_idx and input dimension based on tokenizer
padding_idx = tokenizer.pad_token_id
input_dim = len(tokenizer)
# Load data
print("Loading and preprocessing data...")
train_loader, eval_loader = load_data(args, tokenizer)
print("Data loaded and preprocessed successfully.")
# Define model parameters
d_model = 512 # half to save space
num_heads = 8
num_layers = 6
d_ff = 2048
num_experts = 4
output_dim = input_dim
dropout = 0.1
top_k = 2
state_dim = 128
action_dim = d_model
hidden_dim = 512
vocab_dim = len(tokenizer)
# Initialize and load the Transformer model (on CPU)
print("Initializing and loading Transformer model...")
model_transformer = Transformer(input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout, top_k)
model_transformer.load_state_dict(torch.load(args.transformer_model_path, map_location='cpu'))
model_transformer.eval()
model_transformer.to('cpu')
print("Transformer model loaded and moved to CPU.")
# Define World Model components
representation_network = RepresentationNetwork(vocab_dim, d_model, state_dim).to(device)
dynamics_network = DynamicsNetwork(state_dim, action_dim, hidden_dim).to(device)
prediction_network = PredictionNetwork(state_dim, input_dim, 1).to(device)
action_encoder = ActionEncoder(input_dim, action_dim).to(device)
# Define Optimizers and Schedulers
optimizer = optim.AdamW(
list(representation_network.parameters()) +
list(dynamics_network.parameters()) +
list(prediction_network.parameters()) +
list(action_encoder.parameters()),
lr=args.learning_rate, weight_decay=args.weight_decay
)
scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
scaler = GradScaler()
# Initialize PPO Agent
ppo_agent = PPOAgent(
policy_network=prediction_network,
optimizer=optim.AdamW(prediction_network.parameters(), lr=args.learning_rate),
clip_epsilon=0.2,
entropy_coef=0.01,
value_coef=0.5
)
# Bundle World Model components
world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent)
print("Setup complete. Starting training...")
for epoch in range(args.num_epochs):
print(f"Epoch {epoch + 1}/{args.num_epochs} started.")
# Train World Model
avg_train_loss = train_epoch_world_model(
world_model_components,
train_loader,
optimizer,
scheduler,
scaler,
args,
model_transformer,
state_dim,
d_model, # this is the embedding dimension
input_dim
)
print(f"World Model training epoch {epoch + 1} completed. Average loss: {avg_train_loss:.4f}")
# Evaluate World Model
avg_eval_loss = evaluate_world_model(
world_model_components,
model_transformer,
eval_loader,
args
)
print(f"Evaluation for epoch {epoch + 1} completed. Average loss: {avg_eval_loss:.4f}")
print(f"Epoch {epoch + 1}/{args.num_epochs}, Train Loss: {avg_train_loss:.4f}, Eval Loss: {avg_eval_loss:.4f}")
# Save Models
save_all_models(model_transformer, representation_network, dynamics_network, prediction_network, action_encoder, args.save_dir, epoch + 1)
print(f"Models saved for epoch {epoch + 1}")
print("Training completed.")
if __name__ == '__main__':
main()