RobbiePasquale
commited on
Commit
•
5c18e4c
1
Parent(s):
5370d9f
Create lihtbulb_custom
Browse files- lihtbulb_custom +2254 -0
lihtbulb_custom
ADDED
@@ -0,0 +1,2254 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.optim as optim
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
import copy
|
10 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
11 |
+
from torch.cuda.amp import autocast, GradScaler
|
12 |
+
from datasets import load_dataset
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
from typing import List, Tuple
|
15 |
+
import sys
|
16 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
17 |
+
|
18 |
+
def parse_args():
|
19 |
+
parser = argparse.ArgumentParser(description='Train or Inference with World Model and Tree of Thought.')
|
20 |
+
parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path')
|
21 |
+
|
22 |
+
parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets')
|
23 |
+
parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name')
|
24 |
+
parser.add_argument('--batch_size', type=int, default=4, help='Batch size')
|
25 |
+
parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs')
|
26 |
+
parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
|
27 |
+
parser.add_argument('--mcts_iterations', type=int, default=3, help='Number of MCTS Iterations')
|
28 |
+
parser.add_argument('--mcts_exploration_constant', type=float, default=1.414, help='Exploration constant for MCTS')
|
29 |
+
parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps')
|
30 |
+
parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate')
|
31 |
+
parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay')
|
32 |
+
parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight')
|
33 |
+
parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight')
|
34 |
+
parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping')
|
35 |
+
parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models')
|
36 |
+
parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance')
|
37 |
+
parser.add_argument('--mode', type=str, choices=['train', 'inference'], default='train', help='Mode: train or inference')
|
38 |
+
parser.add_argument('--inference_mode', type=str, choices=['world_model', 'without_world_model', 'world_model_tree_of_thought'], default='world_model_tree_of_thought', help='Inference mode')
|
39 |
+
parser.add_argument('--query', type=str, default='', help='Input query for inference')
|
40 |
+
parser.add_argument('--train_mode', type=str, choices=['world_model', 'language_model'], default='language_model', help='Train world model or language model only')
|
41 |
+
parser.add_argument('--beam_size', type=int, default=5, help='Beam size for beam search')
|
42 |
+
parser.add_argument('--n_tokens_predict', type=int, default=3, help='Number of tokens to predict at each step')
|
43 |
+
parser.add_argument('--load_model', type=str, default=None,
|
44 |
+
help='Path to load saved model. If not provided, a new model will be initialized.')
|
45 |
+
|
46 |
+
parser.add_argument('--use_custom_data', action='store_true', help='Use custom data for training')
|
47 |
+
|
48 |
+
# Determine the base directory
|
49 |
+
if hasattr(sys, 'frozen') and hasattr(sys, '_MEIPASS'):
|
50 |
+
# PyInstaller creates a temp folder and stores path in _MEIPASS
|
51 |
+
base_dir = sys._MEIPASS
|
52 |
+
elif '__file__' in globals():
|
53 |
+
# Running as a script
|
54 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
55 |
+
else:
|
56 |
+
# Running in an interactive environment (e.g., Jupyter, Colab)
|
57 |
+
base_dir = os.getcwd()
|
58 |
+
|
59 |
+
default_paths = [
|
60 |
+
'/content/drive/MyDrive/lightbulb/knowledge_base.json',
|
61 |
+
'/content/drive/MyDrive/lightbulb/rag_cache.json',
|
62 |
+
'/content/drive/MyDrive/lightbulb/llm_training_data/llm_training_data.jsonl'
|
63 |
+
]
|
64 |
+
|
65 |
+
parser.add_argument('--custom_data_paths', nargs='+', default=default_paths,
|
66 |
+
help='Paths to custom data files (relative to the script location or current working directory)')
|
67 |
+
|
68 |
+
args, unknown = parser.parse_known_args()
|
69 |
+
|
70 |
+
# Convert relative paths to absolute paths
|
71 |
+
args.custom_data_paths = [os.path.abspath(os.path.join(base_dir, path)) for path in args.custom_data_paths]
|
72 |
+
|
73 |
+
return args
|
74 |
+
|
75 |
+
import json
|
76 |
+
import jsonlines
|
77 |
+
|
78 |
+
def load_custom_data_from_files(file_paths):
|
79 |
+
custom_data = []
|
80 |
+
for file_path in file_paths:
|
81 |
+
if file_path.endswith('.json'):
|
82 |
+
with open(file_path, 'r') as f:
|
83 |
+
data = json.load(f)
|
84 |
+
if isinstance(data, list):
|
85 |
+
custom_data.extend(data)
|
86 |
+
else:
|
87 |
+
custom_data.append(data)
|
88 |
+
elif file_path.endswith('.jsonl'):
|
89 |
+
with jsonlines.open(file_path) as reader:
|
90 |
+
custom_data.extend(reader)
|
91 |
+
return custom_data
|
92 |
+
|
93 |
+
def preprocess_custom_data(data_list):
|
94 |
+
processed_data = []
|
95 |
+
for item in data_list:
|
96 |
+
# Check if the item is a string (JSON)
|
97 |
+
if isinstance(item, str):
|
98 |
+
try:
|
99 |
+
item = json.loads(item)
|
100 |
+
except json.JSONDecodeError:
|
101 |
+
print(f"Failed to parse JSON: {item[:100]}...") # Print first 100 chars for debugging
|
102 |
+
continue # Skip this item if it's not valid JSON
|
103 |
+
|
104 |
+
# Process query and content
|
105 |
+
query = item.get('query', '')
|
106 |
+
content = item.get('content', '')
|
107 |
+
if content == "RAG response generation failed.":
|
108 |
+
content = ""
|
109 |
+
|
110 |
+
# Combine query and content
|
111 |
+
combined_text = f"Query: {query} Content: {content}"
|
112 |
+
|
113 |
+
# Process numerical data (assuming these are available in the item dict)
|
114 |
+
episode_reward = item.get('episode_reward', 0)
|
115 |
+
loss = item.get('loss', 0)
|
116 |
+
cosine_similarity = item.get('cosine_similarity', 0)
|
117 |
+
rag_performance = item.get('rag_performance', 0)
|
118 |
+
ranking_model_performance = item.get('ranking_model_performance', 0)
|
119 |
+
|
120 |
+
# Create a dictionary with processed data
|
121 |
+
processed_item = {
|
122 |
+
'text': combined_text,
|
123 |
+
'episode_reward': episode_reward,
|
124 |
+
'loss': loss,
|
125 |
+
'cosine_similarity': cosine_similarity,
|
126 |
+
'rag_performance': rag_performance,
|
127 |
+
'ranking_model_performance': ranking_model_performance
|
128 |
+
}
|
129 |
+
|
130 |
+
processed_data.append(processed_item)
|
131 |
+
|
132 |
+
return processed_data
|
133 |
+
|
134 |
+
def load_custom_data(args, tokenizer, custom_data):
|
135 |
+
# Preprocess the custom data
|
136 |
+
processed_data = preprocess_custom_data(custom_data)
|
137 |
+
|
138 |
+
# Create a custom dataset
|
139 |
+
class CustomDataset(torch.utils.data.Dataset):
|
140 |
+
def __init__(self, data, tokenizer, max_length):
|
141 |
+
self.data = data
|
142 |
+
self.tokenizer = tokenizer
|
143 |
+
self.max_length = max_length
|
144 |
+
|
145 |
+
def __len__(self):
|
146 |
+
return len(self.data)
|
147 |
+
|
148 |
+
def __getitem__(self, idx):
|
149 |
+
item = self.data[idx]
|
150 |
+
encoded = self.tokenizer.encode_plus(
|
151 |
+
item['text'],
|
152 |
+
max_length=self.max_length,
|
153 |
+
padding='max_length',
|
154 |
+
truncation=True,
|
155 |
+
return_tensors='pt'
|
156 |
+
)
|
157 |
+
return {
|
158 |
+
'input_ids': encoded['input_ids'].squeeze(),
|
159 |
+
'attention_mask': encoded['attention_mask'].squeeze(),
|
160 |
+
'episode_reward': torch.tensor(item['episode_reward'], dtype=torch.float),
|
161 |
+
'loss': torch.tensor(item['loss'], dtype=torch.float),
|
162 |
+
'cosine_similarity': torch.tensor(item['cosine_similarity'], dtype=torch.float),
|
163 |
+
'rag_performance': torch.tensor(item['rag_performance'], dtype=torch.float),
|
164 |
+
'ranking_model_performance': torch.tensor(item['ranking_model_performance'], dtype=torch.float)
|
165 |
+
}
|
166 |
+
|
167 |
+
# Create dataset and dataloader
|
168 |
+
dataset = CustomDataset(processed_data, tokenizer, args.max_length)
|
169 |
+
|
170 |
+
# Split the dataset into train and eval
|
171 |
+
train_size = int(0.8 * len(dataset))
|
172 |
+
eval_size = len(dataset) - train_size
|
173 |
+
train_dataset, eval_dataset = torch.utils.data.random_split(dataset, [train_size, eval_size])
|
174 |
+
|
175 |
+
train_loader = DataLoader(
|
176 |
+
train_dataset,
|
177 |
+
batch_size=args.batch_size,
|
178 |
+
shuffle=True,
|
179 |
+
num_workers=4
|
180 |
+
)
|
181 |
+
eval_loader = DataLoader(
|
182 |
+
eval_dataset,
|
183 |
+
batch_size=args.batch_size,
|
184 |
+
shuffle=False,
|
185 |
+
num_workers=4
|
186 |
+
)
|
187 |
+
|
188 |
+
return train_loader, eval_loader
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
def load_data(args, tokenizer):
|
193 |
+
# Load the dataset
|
194 |
+
dataset = load_dataset(args.dataset_name, args.dataset_config)
|
195 |
+
|
196 |
+
# Ensure the tokenizer has a padding token
|
197 |
+
if tokenizer.pad_token is None:
|
198 |
+
tokenizer.pad_token = tokenizer.eos_token
|
199 |
+
|
200 |
+
def tokenize_function(examples):
|
201 |
+
return tokenizer(examples['text'], truncation=True, max_length=args.max_length)
|
202 |
+
|
203 |
+
tokenized_datasets = dataset.map(
|
204 |
+
tokenize_function,
|
205 |
+
batched=True,
|
206 |
+
num_proc=4,
|
207 |
+
remove_columns=dataset['train'].column_names,
|
208 |
+
)
|
209 |
+
|
210 |
+
# Build inputs and labels for language modeling
|
211 |
+
block_size = args.max_length
|
212 |
+
|
213 |
+
def group_texts(examples):
|
214 |
+
# Concatenate all texts
|
215 |
+
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
|
216 |
+
total_length = len(concatenated_examples['input_ids'])
|
217 |
+
# We drop the small remainder
|
218 |
+
total_length = (total_length // block_size) * block_size
|
219 |
+
# Split by chunks of block_size
|
220 |
+
result = {
|
221 |
+
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
|
222 |
+
for k, t in concatenated_examples.items()
|
223 |
+
}
|
224 |
+
result['labels'] = result['input_ids'].copy()
|
225 |
+
return result
|
226 |
+
|
227 |
+
lm_datasets = tokenized_datasets.map(
|
228 |
+
group_texts,
|
229 |
+
batched=True,
|
230 |
+
num_proc=4,
|
231 |
+
)
|
232 |
+
|
233 |
+
# Create DataLoader
|
234 |
+
train_dataset = lm_datasets['train']
|
235 |
+
eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test']
|
236 |
+
|
237 |
+
def data_collator(data):
|
238 |
+
return {
|
239 |
+
'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long),
|
240 |
+
'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long)
|
241 |
+
}
|
242 |
+
|
243 |
+
train_loader = DataLoader(
|
244 |
+
train_dataset,
|
245 |
+
shuffle=True,
|
246 |
+
batch_size=args.batch_size,
|
247 |
+
collate_fn=data_collator,
|
248 |
+
pin_memory=True, # Speeds up transfer to GPU
|
249 |
+
num_workers=4
|
250 |
+
)
|
251 |
+
eval_loader = DataLoader(
|
252 |
+
eval_dataset,
|
253 |
+
shuffle=False,
|
254 |
+
batch_size=args.batch_size,
|
255 |
+
collate_fn=data_collator,
|
256 |
+
pin_memory=True,
|
257 |
+
num_workers=4
|
258 |
+
)
|
259 |
+
|
260 |
+
return train_loader, eval_loader
|
261 |
+
|
262 |
+
def save_all_models(transformer_model, representation_network, dynamics_network, prediction_network, action_encoder, save_dir, epoch):
|
263 |
+
"""
|
264 |
+
Save all models to the specified directory.
|
265 |
+
|
266 |
+
Args:
|
267 |
+
transformer_model (nn.Module): Transformer model.
|
268 |
+
representation_network (nn.Module): Representation network.
|
269 |
+
dynamics_network (nn.Module): Dynamics network.
|
270 |
+
prediction_network (nn.Module): Prediction network.
|
271 |
+
action_encoder (nn.Module): Action encoder.
|
272 |
+
save_dir (str): Directory to save the models.
|
273 |
+
epoch (int): Current epoch number.
|
274 |
+
"""
|
275 |
+
os.makedirs(save_dir, exist_ok=True)
|
276 |
+
|
277 |
+
torch.save(transformer_model.state_dict(), os.path.join(save_dir, f'transformer_model_epoch_{epoch}.pt'))
|
278 |
+
torch.save(representation_network.state_dict(), os.path.join(save_dir, f'representation_network_epoch_{epoch}.pt'))
|
279 |
+
torch.save(dynamics_network.state_dict(), os.path.join(save_dir, f'dynamics_network_epoch_{epoch}.pt'))
|
280 |
+
torch.save(prediction_network.state_dict(), os.path.join(save_dir, f'prediction_network_epoch_{epoch}.pt'))
|
281 |
+
torch.save(action_encoder.state_dict(), os.path.join(save_dir, f'action_encoder_epoch_{epoch}.pt'))
|
282 |
+
|
283 |
+
print(f"All models saved for epoch {epoch}.")
|
284 |
+
|
285 |
+
class RotaryPositionalEncoding(nn.Module):
|
286 |
+
def __init__(self, d_model):
|
287 |
+
super(RotaryPositionalEncoding, self).__init__()
|
288 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model))
|
289 |
+
self.register_buffer('inv_freq', inv_freq)
|
290 |
+
|
291 |
+
def forward(self, x):
|
292 |
+
seq_len, batch_size, _ = x.size()
|
293 |
+
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
294 |
+
sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq)
|
295 |
+
sin = sinusoid_inp.sin().unsqueeze(1) # (seq_len, 1, d_model/2)
|
296 |
+
cos = sinusoid_inp.cos().unsqueeze(1) # (seq_len, 1, d_model/2)
|
297 |
+
|
298 |
+
x1 = x[..., 0::2]
|
299 |
+
x2 = x[..., 1::2]
|
300 |
+
|
301 |
+
# Apply rotation
|
302 |
+
x_rotated = torch.zeros_like(x)
|
303 |
+
x_rotated[..., 0::2] = x1 * cos - x2 * sin
|
304 |
+
x_rotated[..., 1::2] = x1 * sin + x2 * cos
|
305 |
+
|
306 |
+
return x_rotated
|
307 |
+
|
308 |
+
class MultiHeadAttention(nn.Module):
|
309 |
+
def __init__(self, d_model, num_heads):
|
310 |
+
super(MultiHeadAttention, self).__init__()
|
311 |
+
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
|
312 |
+
self.d_k = d_model // num_heads
|
313 |
+
self.num_heads = num_heads
|
314 |
+
self.linear_q = nn.Linear(d_model, d_model)
|
315 |
+
self.linear_k = nn.Linear(d_model, d_model)
|
316 |
+
self.linear_v = nn.Linear(d_model, d_model)
|
317 |
+
self.linear_out = nn.Linear(d_model, d_model)
|
318 |
+
|
319 |
+
def forward(self, query, key, value, mask=None):
|
320 |
+
batch_size = query.size(0)
|
321 |
+
query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
322 |
+
key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
323 |
+
value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
|
324 |
+
|
325 |
+
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k)
|
326 |
+
if mask is not None:
|
327 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
328 |
+
attn = F.softmax(scores, dim=-1)
|
329 |
+
output = torch.matmul(attn, value)
|
330 |
+
|
331 |
+
output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k)
|
332 |
+
return self.linear_out(output)
|
333 |
+
|
334 |
+
class MoE(nn.Module):
|
335 |
+
def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1):
|
336 |
+
super(MoE, self).__init__()
|
337 |
+
self.num_experts = num_experts
|
338 |
+
self.top_k = top_k
|
339 |
+
self.experts = nn.ModuleList([
|
340 |
+
nn.Sequential(
|
341 |
+
nn.Linear(d_model, d_ff),
|
342 |
+
nn.GELU() if i % 2 == 0 else nn.SiLU(),
|
343 |
+
nn.Linear(d_ff, d_model)
|
344 |
+
)
|
345 |
+
for i in range(num_experts)
|
346 |
+
])
|
347 |
+
self.gate = nn.Linear(d_model, num_experts)
|
348 |
+
self.dropout = nn.Dropout(dropout)
|
349 |
+
|
350 |
+
def forward(self, x):
|
351 |
+
batch_size, seq_len, d_model = x.size()
|
352 |
+
# Compute gating scores
|
353 |
+
gate_scores = self.gate(x) # (batch_size, seq_len, num_experts)
|
354 |
+
top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1) # (batch_size, seq_len, top_k)
|
355 |
+
top_k_scores = F.softmax(top_k_scores, dim=-1) # (batch_size, seq_len, top_k)
|
356 |
+
|
357 |
+
# Initialize output
|
358 |
+
output = torch.zeros_like(x)
|
359 |
+
|
360 |
+
# Flatten batch and sequence dimensions
|
361 |
+
x_flat = x.view(-1, d_model) # (batch_size * seq_len, d_model)
|
362 |
+
output_flat = output.view(-1, d_model)
|
363 |
+
top_k_indices_flat = top_k_indices.view(-1, self.top_k) # (batch_size * seq_len, top_k)
|
364 |
+
top_k_scores_flat = top_k_scores.view(-1, self.top_k) # (batch_size * seq_len, top_k)
|
365 |
+
|
366 |
+
for k in range(self.top_k):
|
367 |
+
expert_idx_flat = top_k_indices_flat[:, k] # (batch_size * seq_len)
|
368 |
+
expert_scores_flat = top_k_scores_flat[:, k] # (batch_size * seq_len)
|
369 |
+
for e in range(self.num_experts):
|
370 |
+
mask = (expert_idx_flat == e) # Boolean mask
|
371 |
+
if mask.any():
|
372 |
+
x_masked = x_flat[mask] # Select tokens for expert e
|
373 |
+
expert_output = self.experts[e](x_masked) # Apply expert e
|
374 |
+
output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output
|
375 |
+
|
376 |
+
output = output_flat.view(batch_size, seq_len, d_model)
|
377 |
+
return self.dropout(output)
|
378 |
+
|
379 |
+
class TransformerBlock(nn.Module):
|
380 |
+
def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2):
|
381 |
+
super(TransformerBlock, self).__init__()
|
382 |
+
self.self_attention = MultiHeadAttention(d_model, num_heads)
|
383 |
+
self.norm1 = nn.LayerNorm(d_model)
|
384 |
+
self.cross_attention = MultiHeadAttention(d_model, num_heads)
|
385 |
+
self.norm2 = nn.LayerNorm(d_model)
|
386 |
+
self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout)
|
387 |
+
self.norm3 = nn.LayerNorm(d_model)
|
388 |
+
|
389 |
+
def forward(self, x, mask=None, enc_output=None, enc_mask=None):
|
390 |
+
# Self-attention
|
391 |
+
attn_output = self.self_attention(x, x, x, mask)
|
392 |
+
x = self.norm1(x + attn_output)
|
393 |
+
# Cross-attention (only in decoder)
|
394 |
+
if enc_output is not None:
|
395 |
+
cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask)
|
396 |
+
x = self.norm2(x + cross_attn_output)
|
397 |
+
# Feedforward/MoE
|
398 |
+
moe_output = self.moe(x)
|
399 |
+
return self.norm3(x + moe_output)
|
400 |
+
|
401 |
+
class Transformer(nn.Module):
|
402 |
+
def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2):
|
403 |
+
super(Transformer, self).__init__()
|
404 |
+
self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1)
|
405 |
+
self.rotary_positional_encoding = RotaryPositionalEncoding(d_model)
|
406 |
+
self.encoder_layers = nn.ModuleList(
|
407 |
+
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
|
408 |
+
)
|
409 |
+
self.decoder_layers = nn.ModuleList(
|
410 |
+
[TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)]
|
411 |
+
)
|
412 |
+
self.output_layer = nn.Linear(d_model, output_dim)
|
413 |
+
self.d_model = d_model
|
414 |
+
|
415 |
+
def forward(self, src, tgt, src_mask=None, tgt_mask=None):
|
416 |
+
# Encoder
|
417 |
+
src = self.embedding(src) * math.sqrt(self.d_model)
|
418 |
+
src = src.transpose(0, 1) # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model)
|
419 |
+
src = self.rotary_positional_encoding(src)
|
420 |
+
src = src.transpose(0, 1) # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model)
|
421 |
+
for layer in self.encoder_layers:
|
422 |
+
src = layer(src, src_mask)
|
423 |
+
|
424 |
+
# Decoder
|
425 |
+
tgt = self.embedding(tgt) * math.sqrt(self.d_model)
|
426 |
+
tgt = tgt.transpose(0, 1)
|
427 |
+
tgt = self.rotary_positional_encoding(tgt)
|
428 |
+
tgt = tgt.transpose(0, 1)
|
429 |
+
for layer in self.decoder_layers:
|
430 |
+
tgt = layer(tgt, tgt_mask, src, src_mask)
|
431 |
+
output = self.output_layer(tgt)
|
432 |
+
return output
|
433 |
+
|
434 |
+
def generate_with_beam_search(self, src, tokenizer, beam_size=5, max_length=20, n_tokens_predict=3, temperature=1.0):
|
435 |
+
"""
|
436 |
+
Generate sequences using beam search with multi-token prediction.
|
437 |
+
|
438 |
+
Args:
|
439 |
+
src (torch.Tensor): Source input tensor of shape (batch_size, seq_len)
|
440 |
+
tokenizer: Tokenizer to access special tokens
|
441 |
+
beam_size (int): Size of the beam for beam search
|
442 |
+
max_length (int): Maximum length of the generated sequence
|
443 |
+
n_tokens_predict (int): Number of tokens to predict at each step
|
444 |
+
temperature (float): Temperature parameter for softmax
|
445 |
+
|
446 |
+
Returns:
|
447 |
+
List[Tuple[torch.Tensor, float]]: List of (sequence, score) tuples
|
448 |
+
"""
|
449 |
+
batch_size = src.size(0)
|
450 |
+
device = src.device
|
451 |
+
vocab_size = self.output_layer.out_features
|
452 |
+
|
453 |
+
# Encode the source
|
454 |
+
src_enc = self.encode(src)
|
455 |
+
|
456 |
+
# Initialize beam
|
457 |
+
beam = [(torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=device),
|
458 |
+
0.0, # log probability
|
459 |
+
torch.zeros(batch_size, device=device), # cumulative entropy
|
460 |
+
torch.zeros(batch_size, device=device))] # cumulative variance
|
461 |
+
|
462 |
+
for _ in range(max_length // n_tokens_predict):
|
463 |
+
all_candidates = []
|
464 |
+
for seq, score, cum_entropy, cum_variance in beam:
|
465 |
+
if seq[:, -1].item() == tokenizer.eos_token_id:
|
466 |
+
all_candidates.append((seq, score, cum_entropy, cum_variance))
|
467 |
+
continue
|
468 |
+
|
469 |
+
# Predict next n tokens
|
470 |
+
logits = self.predict_next_n_tokens(src_enc, seq, n_tokens_predict)
|
471 |
+
|
472 |
+
# Calculate probabilities, entropy, and variance
|
473 |
+
probs = F.softmax(logits / temperature, dim=-1)
|
474 |
+
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
|
475 |
+
variance = torch.var(probs, dim=-1)
|
476 |
+
|
477 |
+
# Sample top-k tokens for each position
|
478 |
+
topk_probs, topk_indices = torch.topk(probs, k=beam_size, dim=-1)
|
479 |
+
|
480 |
+
# Generate all possible continuations
|
481 |
+
for i in range(beam_size ** n_tokens_predict):
|
482 |
+
indices = [i // (beam_size ** j) % beam_size for j in range(n_tokens_predict)]
|
483 |
+
new_tokens = topk_indices[:, range(n_tokens_predict), indices]
|
484 |
+
new_seq = torch.cat([seq, new_tokens], dim=-1)
|
485 |
+
new_score = score + torch.sum(torch.log(topk_probs[:, range(n_tokens_predict), indices]))
|
486 |
+
new_entropy = cum_entropy + torch.sum(entropy[:, indices])
|
487 |
+
new_variance = cum_variance + torch.sum(variance[:, indices])
|
488 |
+
|
489 |
+
all_candidates.append((new_seq, new_score, new_entropy, new_variance))
|
490 |
+
|
491 |
+
# Select top beam_size candidates
|
492 |
+
beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:beam_size]
|
493 |
+
|
494 |
+
# Stop if all beams have ended
|
495 |
+
if all(seq[:, -1].item() == tokenizer.eos_token_id for seq, _, _, _ in beam):
|
496 |
+
break
|
497 |
+
|
498 |
+
return [(seq, score) for seq, score, _, _ in beam]
|
499 |
+
|
500 |
+
def encode(self, src):
|
501 |
+
src_emb = self.embedding(src) * math.sqrt(self.d_model)
|
502 |
+
src_emb = src_emb.transpose(0, 1)
|
503 |
+
src_emb = self.rotary_positional_encoding(src_emb)
|
504 |
+
src_emb = src_emb.transpose(0, 1)
|
505 |
+
src_enc = src_emb
|
506 |
+
for layer in self.encoder_layers:
|
507 |
+
src_enc = layer(src_enc)
|
508 |
+
return src_enc
|
509 |
+
|
510 |
+
def predict_next_n_tokens(self, src_enc, tgt_seq, n_tokens):
|
511 |
+
tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model)
|
512 |
+
tgt_emb = tgt_emb.transpose(0, 1)
|
513 |
+
tgt_emb = self.rotary_positional_encoding(tgt_emb)
|
514 |
+
tgt_emb = tgt_emb.transpose(0, 1)
|
515 |
+
tgt_dec = tgt_emb
|
516 |
+
for layer in self.decoder_layers:
|
517 |
+
tgt_dec = layer(tgt_dec, None, src_enc, None)
|
518 |
+
output = self.output_layer(tgt_dec[:, -1:])
|
519 |
+
return output.repeat(1, n_tokens, 1)
|
520 |
+
|
521 |
+
# Objective Functions
|
522 |
+
|
523 |
+
class InfoNCE_Loss(nn.Module):
|
524 |
+
def __init__(self, temperature=0.07):
|
525 |
+
super(InfoNCE_Loss, self).__init__()
|
526 |
+
self.temperature = temperature
|
527 |
+
self.cross_entropy = nn.CrossEntropyLoss()
|
528 |
+
|
529 |
+
def forward(self, z_i, z_j):
|
530 |
+
"""
|
531 |
+
Args:
|
532 |
+
z_i (torch.Tensor): Flattened representations from view i, shape (2n, embed_dim)
|
533 |
+
z_j (torch.Tensor): Flattened representations from view j, shape (2n, embed_dim)
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
torch.Tensor: InfoNCE loss
|
537 |
+
"""
|
538 |
+
n = z_i.size(0)
|
539 |
+
z = torch.cat([z_i, z_j], dim=0) # Shape: (2n, embed_dim)
|
540 |
+
|
541 |
+
z = F.normalize(z, dim=1)
|
542 |
+
similarity_matrix = torch.matmul(z, z.T) # Shape: (2n, 2n)
|
543 |
+
|
544 |
+
# Create a mask to exclude self-similarity
|
545 |
+
mask = torch.eye(2 * n, device=z.device, dtype=torch.bool)
|
546 |
+
similarity_matrix = similarity_matrix.masked_fill(mask, -1e4) # Use a manageable negative value
|
547 |
+
|
548 |
+
# Create labels for contrastive learning
|
549 |
+
labels = torch.arange(n, device=z.device)
|
550 |
+
labels = torch.cat([labels + n, labels], dim=0) # Shape: (2n,)
|
551 |
+
|
552 |
+
# Apply temperature scaling
|
553 |
+
similarity_matrix /= self.temperature
|
554 |
+
|
555 |
+
# Compute cross-entropy loss
|
556 |
+
loss = self.cross_entropy(similarity_matrix, labels)
|
557 |
+
return loss
|
558 |
+
|
559 |
+
class CovarianceRegularization(nn.Module):
|
560 |
+
def __init__(self, lambda_reg=1e-3):
|
561 |
+
super(CovarianceRegularization, self).__init__()
|
562 |
+
self.lambda_reg = lambda_reg
|
563 |
+
|
564 |
+
def forward(self, embeddings):
|
565 |
+
"""
|
566 |
+
Args:
|
567 |
+
embeddings (torch.Tensor): Embedding tensor, shape (batch_size, embed_dim)
|
568 |
+
|
569 |
+
Returns:
|
570 |
+
torch.Tensor: Covariance regularization loss
|
571 |
+
"""
|
572 |
+
batch_size, embed_dim = embeddings.size()
|
573 |
+
mean = embeddings.mean(dim=0)
|
574 |
+
embeddings_centered = embeddings - mean
|
575 |
+
cov = (embeddings_centered.T @ embeddings_centered) / (batch_size - 1)
|
576 |
+
cov_loss = torch.sum(cov ** 2) - torch.sum(torch.diag(cov) ** 2)
|
577 |
+
return self.lambda_reg * cov_loss
|
578 |
+
|
579 |
+
class DynamicsPerformanceLoss(nn.Module):
|
580 |
+
def __init__(self, lambda_var=1e-3):
|
581 |
+
super(DynamicsPerformanceLoss, self).__init__()
|
582 |
+
self.lambda_var = lambda_var
|
583 |
+
|
584 |
+
def forward(self, true_next_state, predicted_next_state):
|
585 |
+
"""
|
586 |
+
Args:
|
587 |
+
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
|
588 |
+
predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim)
|
589 |
+
|
590 |
+
Returns:
|
591 |
+
torch.Tensor: Dynamics performance loss
|
592 |
+
"""
|
593 |
+
mse_loss = F.mse_loss(predicted_next_state, true_next_state)
|
594 |
+
variance_loss = torch.var(predicted_next_state, dim=0).mean()
|
595 |
+
return mse_loss + self.lambda_var * variance_loss
|
596 |
+
|
597 |
+
class ThoughtConsistencyLoss(nn.Module):
|
598 |
+
def __init__(self):
|
599 |
+
super(ThoughtConsistencyLoss, self).__init__()
|
600 |
+
|
601 |
+
def forward(self, true_next_state, perturbed_next_state):
|
602 |
+
"""
|
603 |
+
Args:
|
604 |
+
true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim)
|
605 |
+
perturbed_next_state (torch.Tensor): Perturbed next state, shape (batch_size, state_dim)
|
606 |
+
|
607 |
+
Returns:
|
608 |
+
torch.Tensor: Thought-consistency loss
|
609 |
+
"""
|
610 |
+
return F.mse_loss(true_next_state, perturbed_next_state)
|
611 |
+
|
612 |
+
class PolicyValueJointLoss(nn.Module):
|
613 |
+
def __init__(self, lambda_value=0.5):
|
614 |
+
super(PolicyValueJointLoss, self).__init__()
|
615 |
+
self.lambda_value = lambda_value
|
616 |
+
self.cross_entropy = nn.CrossEntropyLoss()
|
617 |
+
self.mse_loss = nn.MSELoss()
|
618 |
+
|
619 |
+
def forward(self, policy_logits, true_policy, value_pred, true_value):
|
620 |
+
"""
|
621 |
+
Args:
|
622 |
+
policy_logits (torch.Tensor): Logits from the policy network, shape (batch_size * seq_len, num_actions)
|
623 |
+
true_policy (torch.Tensor): Ground truth policy, shape (batch_size * seq_len, num_actions)
|
624 |
+
value_pred (torch.Tensor): Predicted values, shape (batch_size * seq_len)
|
625 |
+
true_value (torch.Tensor): Ground truth values, shape (batch_size * seq_len)
|
626 |
+
|
627 |
+
Returns:
|
628 |
+
torch.Tensor: Combined policy and value loss
|
629 |
+
"""
|
630 |
+
policy_logits = policy_logits.reshape(-1, policy_logits.size(-1))
|
631 |
+
true_policy = true_policy.reshape(-1, true_policy.size(-1))
|
632 |
+
value_pred = value_pred.reshape(-1)
|
633 |
+
true_value = true_value.reshape(-1)
|
634 |
+
|
635 |
+
|
636 |
+
policy_loss = self.cross_entropy(policy_logits, true_policy.argmax(dim=1))
|
637 |
+
value_loss = self.mse_loss(value_pred, true_value)
|
638 |
+
return policy_loss + self.lambda_value * value_loss
|
639 |
+
|
640 |
+
class ActionDiversityReward(nn.Module):
|
641 |
+
def __init__(self, lambda_div=1e-3):
|
642 |
+
super(ActionDiversityReward, self).__init__()
|
643 |
+
self.lambda_div = lambda_div
|
644 |
+
|
645 |
+
def forward(self, action_embeddings):
|
646 |
+
"""
|
647 |
+
Args:
|
648 |
+
action_embeddings (torch.Tensor): Embeddings of actions, shape (batch_size, embed_dim)
|
649 |
+
|
650 |
+
Returns:
|
651 |
+
torch.Tensor: Action diversity loss
|
652 |
+
"""
|
653 |
+
similarity_matrix = F.cosine_similarity(action_embeddings.unsqueeze(1), action_embeddings.unsqueeze(0), dim=2)
|
654 |
+
# Zero out self-similarity
|
655 |
+
similarity_matrix = similarity_matrix - torch.eye(similarity_matrix.size(0)).to(action_embeddings.device)
|
656 |
+
diversity_loss = torch.sum(similarity_matrix ** 2)
|
657 |
+
return self.lambda_div * diversity_loss
|
658 |
+
|
659 |
+
class ExpectedThoughtValueLoss(nn.Module):
|
660 |
+
def __init__(self):
|
661 |
+
super(ExpectedThoughtValueLoss, self).__init__()
|
662 |
+
|
663 |
+
def forward(self, mcts_best_values):
|
664 |
+
"""
|
665 |
+
Args:
|
666 |
+
mcts_best_values (torch.Tensor): Best values from MCTS, shape (batch_size)
|
667 |
+
|
668 |
+
Returns:
|
669 |
+
torch.Tensor: ETV loss
|
670 |
+
"""
|
671 |
+
return -mcts_best_values.mean()
|
672 |
+
|
673 |
+
class ExplorationRegularization(nn.Module):
|
674 |
+
def __init__(self, lambda_expl=1e-3):
|
675 |
+
super(ExplorationRegularization, self).__init__()
|
676 |
+
self.lambda_expl = lambda_expl
|
677 |
+
|
678 |
+
def forward(self, visit_counts):
|
679 |
+
"""
|
680 |
+
Args:
|
681 |
+
visit_counts (torch.Tensor): Visit counts for actions, shape (batch_size, num_actions)
|
682 |
+
|
683 |
+
Returns:
|
684 |
+
torch.Tensor: Exploration regularization loss
|
685 |
+
"""
|
686 |
+
reward = torch.sum(1.0 / (visit_counts + 1), dim=-1)
|
687 |
+
return self.lambda_expl * reward.mean()
|
688 |
+
|
689 |
+
class KL_DivergenceLoss(nn.Module):
|
690 |
+
def __init__(self):
|
691 |
+
super(KL_DivergenceLoss, self).__init__()
|
692 |
+
|
693 |
+
def forward(self, old_policy, new_policy):
|
694 |
+
"""
|
695 |
+
Args:
|
696 |
+
old_policy (torch.Tensor): Old policy probabilities, shape (batch_size, num_actions)
|
697 |
+
new_policy (torch.Tensor): New policy probabilities, shape (batch_size, num_actions)
|
698 |
+
|
699 |
+
Returns:
|
700 |
+
torch.Tensor: KL divergence loss
|
701 |
+
"""
|
702 |
+
kl_div = F.kl_div(new_policy.log(), old_policy, reduction='batchmean')
|
703 |
+
return kl_div
|
704 |
+
|
705 |
+
# MuZero Components
|
706 |
+
|
707 |
+
class ActionEncoder(nn.Module):
|
708 |
+
def __init__(self, action_vocab_size, embed_dim):
|
709 |
+
super(ActionEncoder, self).__init__()
|
710 |
+
self.embedding = nn.Embedding(action_vocab_size, embed_dim)
|
711 |
+
|
712 |
+
def forward(self, action_indices):
|
713 |
+
"""
|
714 |
+
Args:
|
715 |
+
action_indices (torch.Tensor): Tensor of shape (batch_size, seq_len)
|
716 |
+
|
717 |
+
Returns:
|
718 |
+
torch.Tensor: Encoded actions of shape (batch_size, seq_len, embed_dim)
|
719 |
+
"""
|
720 |
+
return self.embedding(action_indices)
|
721 |
+
|
722 |
+
class RepresentationNetwork(nn.Module):
|
723 |
+
def __init__(self, vocab_dim, d_model, state_dim):
|
724 |
+
super(RepresentationNetwork, self).__init__()
|
725 |
+
self.proj = nn.Linear(vocab_dim, d_model) # Project from vocab_dim to d_model
|
726 |
+
self.linear = nn.Linear(d_model, state_dim) # Project from d_model to state_dim
|
727 |
+
self.norm = nn.LayerNorm(state_dim)
|
728 |
+
|
729 |
+
def forward(self, transformer_output):
|
730 |
+
"""
|
731 |
+
Args:
|
732 |
+
transformer_output (torch.Tensor): Shape (batch_size, seq_len, vocab_dim)
|
733 |
+
|
734 |
+
Returns:
|
735 |
+
torch.Tensor: Encoded state of shape (batch_size, seq_len, state_dim)
|
736 |
+
"""
|
737 |
+
# First project down from vocab_dim to d_model
|
738 |
+
projected_output = self.proj(transformer_output) # Shape: (batch_size, seq_len, d_model)
|
739 |
+
# Then project down from d_model to state_dim
|
740 |
+
state = self.linear(projected_output) # Shape: (batch_size, seq_len, state_dim)
|
741 |
+
state = self.norm(state) # Shape: (batch_size, seq_len, state_dim)
|
742 |
+
return state
|
743 |
+
|
744 |
+
|
745 |
+
class DynamicsNetwork(nn.Module):
|
746 |
+
def __init__(self, state_dim, action_dim, hidden_dim):
|
747 |
+
super(DynamicsNetwork, self).__init__()
|
748 |
+
self.rms_norm = nn.LayerNorm(state_dim)
|
749 |
+
self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim)
|
750 |
+
self.activation = nn.GELU()
|
751 |
+
self.fc2 = nn.Linear(hidden_dim, state_dim)
|
752 |
+
|
753 |
+
def forward(self, state, action):
|
754 |
+
"""
|
755 |
+
Args:
|
756 |
+
state (torch.Tensor): Current state, shape (batch_size, seq_len, state_dim)
|
757 |
+
action (torch.Tensor): Action embedding, shape (batch_size, seq_len, action_dim)
|
758 |
+
|
759 |
+
Returns:
|
760 |
+
torch.Tensor: Predicted next state, shape (batch_size, seq_len, state_dim)
|
761 |
+
"""
|
762 |
+
norm_state = self.rms_norm(state)
|
763 |
+
combined = torch.cat([norm_state, action], dim=-1)
|
764 |
+
hidden = self.activation(self.fc1(combined))
|
765 |
+
next_state = self.fc2(hidden)
|
766 |
+
return next_state
|
767 |
+
|
768 |
+
class PredictionNetwork(nn.Module):
|
769 |
+
def __init__(self, state_dim, action_vocab_size, value_dim):
|
770 |
+
super(PredictionNetwork, self).__init__()
|
771 |
+
self.state_dim = state_dim
|
772 |
+
self.rms_norm = nn.LayerNorm(state_dim)
|
773 |
+
self.policy_head = nn.Linear(state_dim, action_vocab_size) # Output size is action_vocab_size
|
774 |
+
self.value_head = nn.Linear(state_dim, value_dim)
|
775 |
+
|
776 |
+
def forward(self, state):
|
777 |
+
"""
|
778 |
+
Args:
|
779 |
+
state (torch.Tensor): State representation, shape (batch_size, state_dim)
|
780 |
+
Returns:
|
781 |
+
Tuple[torch.Tensor, torch.Tensor]: Policy logits and value estimates
|
782 |
+
"""
|
783 |
+
norm_state = self.rms_norm(state)
|
784 |
+
policy_logits = self.policy_head(norm_state) # Shape: (batch_size, action_vocab_size)
|
785 |
+
value_estimates = self.value_head(norm_state).squeeze(-1) # Shape: (batch_size)
|
786 |
+
return policy_logits, value_estimates
|
787 |
+
|
788 |
+
|
789 |
+
|
790 |
+
|
791 |
+
class MCTSNode:
|
792 |
+
__slots__ = [
|
793 |
+
'state',
|
794 |
+
'parent',
|
795 |
+
'action',
|
796 |
+
'children',
|
797 |
+
'visit_count',
|
798 |
+
'value_sum',
|
799 |
+
'prior',
|
800 |
+
'cached_policy',
|
801 |
+
'cached_value',
|
802 |
+
'thought_node',
|
803 |
+
'entropy',
|
804 |
+
'variance'
|
805 |
+
]
|
806 |
+
|
807 |
+
def __init__(self, state, thought_node, parent=None, action=None):
|
808 |
+
self.state = state
|
809 |
+
self.thought_node = thought_node
|
810 |
+
self.parent = parent
|
811 |
+
self.action = action
|
812 |
+
self.children = {}
|
813 |
+
self.visit_count = 0
|
814 |
+
self.value_sum = 0.0
|
815 |
+
self.prior = 0.0
|
816 |
+
self.cached_policy = None
|
817 |
+
self.cached_value = None
|
818 |
+
self.entropy = 0.0
|
819 |
+
self.variance = 0.0
|
820 |
+
|
821 |
+
def expand(self, priors):
|
822 |
+
for child_thought_node in self.thought_node.children:
|
823 |
+
action = child_thought_node.name
|
824 |
+
if action not in self.children:
|
825 |
+
child_state = self.state.apply_action(action)
|
826 |
+
child_node = MCTSNode(
|
827 |
+
state=child_state,
|
828 |
+
thought_node=child_thought_node,
|
829 |
+
parent=self,
|
830 |
+
action=action
|
831 |
+
)
|
832 |
+
child_node.prior = priors.get(action, 1.0 / len(self.thought_node.children))
|
833 |
+
self.children[action] = child_node
|
834 |
+
|
835 |
+
def is_leaf(self):
|
836 |
+
return len(self.children) == 0
|
837 |
+
|
838 |
+
def ucb_score(self, total_visits, exploration_constant=math.sqrt(2)):
|
839 |
+
if self.visit_count == 0:
|
840 |
+
return float('inf') # Ensure unvisited nodes are selected first
|
841 |
+
avg_value = self.value_sum / self.visit_count
|
842 |
+
exploration_term = exploration_constant * self.prior * math.sqrt(total_visits) / (1 + self.visit_count)
|
843 |
+
entropy_term = -0.1 * self.entropy # Slightly prefer lower entropy
|
844 |
+
variance_term = 0.05 * self.variance # Slightly prefer higher variance
|
845 |
+
return avg_value + exploration_term + entropy_term + variance_term
|
846 |
+
|
847 |
+
|
848 |
+
class MCTS:
|
849 |
+
def __init__(self, prediction_network, dynamics_network, action_encoder, num_iterations=10, exploration_constant=math.sqrt(2), beam_size=5, n_tokens_predict=3):
|
850 |
+
self.prediction_network = prediction_network
|
851 |
+
self.dynamics_network = dynamics_network
|
852 |
+
self.action_encoder = action_encoder
|
853 |
+
self.num_iterations = num_iterations
|
854 |
+
self.exploration_constant = exploration_constant
|
855 |
+
self.beam_size = beam_size
|
856 |
+
self.n_tokens_predict = n_tokens_predict
|
857 |
+
self.cache = {}
|
858 |
+
|
859 |
+
def search_with_beam(self, root_state):
|
860 |
+
root_node = MCTSNode(state=root_state, thought_node=root_state.thought_node)
|
861 |
+
|
862 |
+
# Evaluate the root node and backpropagate
|
863 |
+
value_estimate = self.evaluate(root_node) # Evaluate and expand root_node
|
864 |
+
self.backpropagate(root_node, value_estimate) # Backpropagate the value
|
865 |
+
|
866 |
+
beam = [(root_node, 0.0, 0.0, 0.0, [])] # (node, score, cum_entropy, cum_variance, action_sequence)
|
867 |
+
|
868 |
+
for iteration in range(self.num_iterations):
|
869 |
+
all_candidates = []
|
870 |
+
for node, score, cum_entropy, cum_variance, action_sequence in beam:
|
871 |
+
if node.is_leaf():
|
872 |
+
value_estimate = self.evaluate(node)
|
873 |
+
self.backpropagate(node, value_estimate) # Backpropagate after evaluation
|
874 |
+
if len(node.children) == 0:
|
875 |
+
continue # No children to expand
|
876 |
+
|
877 |
+
total_visits = sum(child.visit_count for child in node.children.values())
|
878 |
+
# Select top actions based on UCB score
|
879 |
+
sorted_children = sorted(
|
880 |
+
node.children.items(),
|
881 |
+
key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant),
|
882 |
+
reverse=True
|
883 |
+
)[:self.beam_size]
|
884 |
+
|
885 |
+
for selected_action, selected_node in sorted_children:
|
886 |
+
current_node = selected_node
|
887 |
+
current_sequence = action_sequence + [selected_action]
|
888 |
+
current_score = score
|
889 |
+
current_entropy = cum_entropy + selected_node.entropy
|
890 |
+
current_variance = cum_variance + selected_node.variance
|
891 |
+
|
892 |
+
# Predict n_tokens_predict actions
|
893 |
+
for _ in range(self.n_tokens_predict):
|
894 |
+
if current_node.is_leaf():
|
895 |
+
value_estimate = self.evaluate(current_node)
|
896 |
+
self.backpropagate(current_node, value_estimate) # Backpropagate after evaluation
|
897 |
+
if len(current_node.children) == 0:
|
898 |
+
break # No more actions
|
899 |
+
total_visits = sum(child.visit_count for child in current_node.children.values())
|
900 |
+
next_action, next_node = max(
|
901 |
+
current_node.children.items(),
|
902 |
+
key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant)
|
903 |
+
)
|
904 |
+
current_sequence.append(next_action)
|
905 |
+
|
906 |
+
# Prevent division by zero by ensuring visit_count > 0
|
907 |
+
if next_node.visit_count > 0:
|
908 |
+
current_score += next_node.value_sum / next_node.visit_count
|
909 |
+
else:
|
910 |
+
# Assign a default value or handle the zero division case
|
911 |
+
current_score += 0.0 # Alternatively, use a small epsilon or skip
|
912 |
+
|
913 |
+
current_entropy += next_node.entropy
|
914 |
+
current_variance += next_node.variance
|
915 |
+
current_node = next_node
|
916 |
+
|
917 |
+
all_candidates.append((current_node, current_score, current_entropy, current_variance, current_sequence))
|
918 |
+
|
919 |
+
if not all_candidates:
|
920 |
+
break # No more candidates to expand
|
921 |
+
|
922 |
+
# Select top beam_size candidates
|
923 |
+
beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:self.beam_size]
|
924 |
+
print(f"Iteration {iteration + 1}: Beam size after sorting: {len(beam)}") # Debug
|
925 |
+
|
926 |
+
if beam:
|
927 |
+
best_sequence = beam[0][4]
|
928 |
+
return best_sequence
|
929 |
+
else:
|
930 |
+
return []
|
931 |
+
|
932 |
+
|
933 |
+
|
934 |
+
def search(self, root_state):
|
935 |
+
root_node = MCTSNode(state=root_state, thought_node=root_state.thought_node)
|
936 |
+
|
937 |
+
for _ in range(self.num_iterations):
|
938 |
+
node = self.select(root_node)
|
939 |
+
value = self.evaluate(node)
|
940 |
+
self.backpropagate(node, value)
|
941 |
+
|
942 |
+
return self.best_action_sequence(root_node)
|
943 |
+
|
944 |
+
def select(self, node):
|
945 |
+
while not node.is_leaf():
|
946 |
+
total_visits = sum(child.visit_count for child in node.children.values())
|
947 |
+
_, node = max(
|
948 |
+
node.children.items(),
|
949 |
+
key=lambda item: item[1].ucb_score(total_visits, self.exploration_constant)
|
950 |
+
)
|
951 |
+
return node
|
952 |
+
|
953 |
+
def evaluate(self, node):
|
954 |
+
# Extract the last time step
|
955 |
+
state_representation = node.state.representation[:, -1, :] # Shape: (batch_size=1, state_dim)
|
956 |
+
print(f"Evaluating node with state_representation shape: {state_representation.shape}") # Debug
|
957 |
+
policy_logits, value_estimate = self.prediction_network(state_representation)
|
958 |
+
print(f"Policy logits shape: {policy_logits.shape}, Value estimate shape: {value_estimate.shape}") # Debug
|
959 |
+
value_estimate = value_estimate.item() # Now safe as batch_size=1
|
960 |
+
|
961 |
+
policy_probs = F.softmax(policy_logits, dim=-1).squeeze(0) # Shape: (action_vocab_size,)
|
962 |
+
print(f"Policy probabilities shape: {policy_probs.shape}") # Debug
|
963 |
+
|
964 |
+
priors = {}
|
965 |
+
for child in node.thought_node.children:
|
966 |
+
action_name = child.name
|
967 |
+
action_idx = action_to_index.get(action_name, None)
|
968 |
+
if action_idx is not None and action_idx < policy_probs.size(0):
|
969 |
+
priors[action_name] = policy_probs[action_idx].item()
|
970 |
+
else:
|
971 |
+
priors[action_name] = 1.0 / len(node.thought_node.children)
|
972 |
+
|
973 |
+
node.expand(priors)
|
974 |
+
|
975 |
+
# Calculate entropy and variance
|
976 |
+
entropy = -torch.sum(policy_probs * torch.log(policy_probs + 1e-9))
|
977 |
+
variance = torch.var(policy_probs)
|
978 |
+
node.entropy = entropy.item()
|
979 |
+
node.variance = variance.item()
|
980 |
+
|
981 |
+
print(f"Node entropy: {node.entropy}, variance: {node.variance}") # Debug
|
982 |
+
|
983 |
+
return value_estimate # Return the value estimate for backpropagation
|
984 |
+
|
985 |
+
|
986 |
+
def backpropagate(self, node, value):
|
987 |
+
while node is not None:
|
988 |
+
node.visit_count += 1
|
989 |
+
node.value_sum += value
|
990 |
+
node = node.parent
|
991 |
+
|
992 |
+
def best_action_sequence(self, root_node):
|
993 |
+
sequences = []
|
994 |
+
self._generate_sequences(root_node, [], sequences)
|
995 |
+
|
996 |
+
# Score sequences based on visit counts, entropy, and variance
|
997 |
+
scored_sequences = []
|
998 |
+
for seq in sequences:
|
999 |
+
score = sum(node.visit_count for node in seq)
|
1000 |
+
entropy = sum(node.entropy for node in seq)
|
1001 |
+
variance = sum(node.variance for node in seq)
|
1002 |
+
adjusted_score = score - 0.1 * entropy + 0.05 * variance
|
1003 |
+
scored_sequences.append((seq, adjusted_score))
|
1004 |
+
|
1005 |
+
# Sort sequences by adjusted score and select top beam_size
|
1006 |
+
best_sequences = sorted(scored_sequences, key=lambda x: x[1], reverse=True)[:self.beam_size]
|
1007 |
+
|
1008 |
+
# Return the actions of the best sequence
|
1009 |
+
best_sequence = best_sequences[0][0]
|
1010 |
+
return [node.action for node in best_sequence[1:self.n_tokens_predict+1]] # Exclude root node
|
1011 |
+
|
1012 |
+
def _generate_sequences(self, node, current_sequence, sequences):
|
1013 |
+
current_sequence.append(node)
|
1014 |
+
if len(current_sequence) > self.n_tokens_predict or not node.children:
|
1015 |
+
sequences.append(current_sequence)
|
1016 |
+
else:
|
1017 |
+
for child in node.children.values():
|
1018 |
+
self._generate_sequences(child, current_sequence.copy(), sequences)
|
1019 |
+
|
1020 |
+
class State:
|
1021 |
+
def __init__(self, representation, dynamics_network, action_encoder, thought_node):
|
1022 |
+
self.representation = representation
|
1023 |
+
self.dynamics_network = dynamics_network
|
1024 |
+
self.action_encoder = action_encoder
|
1025 |
+
self.thought_node = thought_node
|
1026 |
+
|
1027 |
+
def apply_action(self, action):
|
1028 |
+
next_thought_node = None
|
1029 |
+
for child in self.thought_node.children:
|
1030 |
+
if child.name == action:
|
1031 |
+
next_thought_node = child
|
1032 |
+
break
|
1033 |
+
if next_thought_node is None:
|
1034 |
+
raise ValueError(f"Action '{action}' is not valid from the current thought node.")
|
1035 |
+
|
1036 |
+
# Adjust action_index and action_embedding shapes
|
1037 |
+
action_index = torch.tensor([action_to_index[action]], device=self.representation.device)
|
1038 |
+
action_embedding = self.action_encoder(action_index) # Shape: (batch_size=1, action_dim)
|
1039 |
+
|
1040 |
+
# Extract the last time step of the state
|
1041 |
+
state = self.representation[:, -1, :] # Shape: (batch_size, state_dim)
|
1042 |
+
|
1043 |
+
# Ensure action_embedding matches the state dimension
|
1044 |
+
next_state_representation = self.dynamics_network(state, action_embedding) # Shape: (batch_size, state_dim)
|
1045 |
+
|
1046 |
+
# Append the new state to the representation history
|
1047 |
+
new_representation = torch.cat([self.representation, next_state_representation.unsqueeze(1)], dim=1) # Shape: (batch_size, seq_len+1, state_dim)
|
1048 |
+
|
1049 |
+
return State(
|
1050 |
+
representation=new_representation,
|
1051 |
+
dynamics_network=self.dynamics_network,
|
1052 |
+
action_encoder=self.action_encoder,
|
1053 |
+
thought_node=next_thought_node
|
1054 |
+
)
|
1055 |
+
|
1056 |
+
class PPOAgent:
|
1057 |
+
def __init__(self, policy_network, optimizer, clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5):
|
1058 |
+
self.policy_network = policy_network
|
1059 |
+
self.optimizer = optimizer
|
1060 |
+
self.clip_epsilon = clip_epsilon
|
1061 |
+
self.entropy_coef = entropy_coef
|
1062 |
+
self.value_coef = value_coef
|
1063 |
+
|
1064 |
+
def compute_loss(self, states, old_log_probs, actions, returns, advantages):
|
1065 |
+
# Get policy logits and value estimates
|
1066 |
+
policy_logits, value_estimates = self.policy_network(states)
|
1067 |
+
|
1068 |
+
# Flatten all tensors
|
1069 |
+
policy_logits = policy_logits.reshape(-1, policy_logits.size(-1))
|
1070 |
+
value_estimates = value_estimates.reshape(-1)
|
1071 |
+
actions = actions.reshape(-1)
|
1072 |
+
old_log_probs = old_log_probs.reshape(-1)
|
1073 |
+
returns = returns.reshape(-1)
|
1074 |
+
advantages = advantages.reshape(-1)
|
1075 |
+
|
1076 |
+
# Ensure all tensors have the same first dimension
|
1077 |
+
assert policy_logits.size(0) == value_estimates.size(0) == actions.size(0) == old_log_probs.size(0) == returns.size(0) == advantages.size(0), "Tensor sizes mismatch"
|
1078 |
+
|
1079 |
+
# Compute new log probabilities
|
1080 |
+
new_log_probs_all = F.log_softmax(policy_logits, dim=-1)
|
1081 |
+
new_log_probs = new_log_probs_all.gather(1, actions.unsqueeze(-1)).squeeze(-1)
|
1082 |
+
|
1083 |
+
# Compute ratios
|
1084 |
+
ratios = torch.exp(new_log_probs - old_log_probs)
|
1085 |
+
|
1086 |
+
# PPO surrogate loss
|
1087 |
+
surr1 = ratios * advantages
|
1088 |
+
surr2 = torch.clamp(ratios, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * advantages
|
1089 |
+
policy_loss = -torch.min(surr1, surr2).mean()
|
1090 |
+
|
1091 |
+
# Value loss
|
1092 |
+
value_loss = F.mse_loss(value_estimates, returns)
|
1093 |
+
|
1094 |
+
# Entropy loss
|
1095 |
+
entropy = -(new_log_probs * torch.exp(new_log_probs)).mean()
|
1096 |
+
|
1097 |
+
# Total loss
|
1098 |
+
total_loss = policy_loss + self.value_coef * value_loss - self.entropy_coef * entropy
|
1099 |
+
return total_loss
|
1100 |
+
|
1101 |
+
# Tree of Thought Components
|
1102 |
+
|
1103 |
+
class ThoughtNode:
|
1104 |
+
def __init__(self, name):
|
1105 |
+
self.name = name
|
1106 |
+
self.children = []
|
1107 |
+
self.parent = None
|
1108 |
+
|
1109 |
+
def add_child(self, child_node):
|
1110 |
+
child_node.parent = self
|
1111 |
+
self.children.append(child_node)
|
1112 |
+
|
1113 |
+
# Function to build the Tree of Thought from your detailed structure
|
1114 |
+
def build_tree_of_thought():
|
1115 |
+
# Create the root node
|
1116 |
+
root = ThoughtNode('Problem-Solving Process')
|
1117 |
+
|
1118 |
+
# Level 1 nodes
|
1119 |
+
problem_identification = ThoughtNode('Problem Identification')
|
1120 |
+
problem_analysis = ThoughtNode('Problem Analysis')
|
1121 |
+
solution_generation = ThoughtNode('Solution Generation')
|
1122 |
+
implementation = ThoughtNode('Implementation')
|
1123 |
+
evaluation_adjustment = ThoughtNode('Evaluation and Adjustment')
|
1124 |
+
|
1125 |
+
root.add_child(problem_identification)
|
1126 |
+
root.add_child(problem_analysis)
|
1127 |
+
root.add_child(solution_generation)
|
1128 |
+
root.add_child(implementation)
|
1129 |
+
root.add_child(evaluation_adjustment)
|
1130 |
+
|
1131 |
+
# Problem Identification children
|
1132 |
+
B1 = ThoughtNode('Define the Problem')
|
1133 |
+
B2 = ThoughtNode('Identify Stakeholders')
|
1134 |
+
B3 = ThoughtNode('Determine Constraints')
|
1135 |
+
B4 = ThoughtNode('Recognize Problem Type')
|
1136 |
+
B5 = ThoughtNode('Historical Context')
|
1137 |
+
problem_identification.add_child(B1)
|
1138 |
+
problem_identification.add_child(B2)
|
1139 |
+
problem_identification.add_child(B3)
|
1140 |
+
problem_identification.add_child(B4)
|
1141 |
+
problem_identification.add_child(B5)
|
1142 |
+
|
1143 |
+
# Define the Problem children
|
1144 |
+
B1a = ThoughtNode('Problem Statement Formulation')
|
1145 |
+
B1b = ThoughtNode('Scope Definition')
|
1146 |
+
B1c = ThoughtNode('Objective Setting')
|
1147 |
+
B1.add_child(B1a)
|
1148 |
+
B1.add_child(B1b)
|
1149 |
+
B1.add_child(B1c)
|
1150 |
+
|
1151 |
+
# Identify Stakeholders children
|
1152 |
+
B2a = ThoughtNode('Stakeholder Mapping')
|
1153 |
+
B2b = ThoughtNode('Interest and Influence Analysis')
|
1154 |
+
B2c = ThoughtNode('Engagement Strategy')
|
1155 |
+
B2.add_child(B2a)
|
1156 |
+
B2.add_child(B2b)
|
1157 |
+
B2.add_child(B2c)
|
1158 |
+
|
1159 |
+
# Determine Constraints children
|
1160 |
+
B3a = ThoughtNode('Resource Limitations')
|
1161 |
+
B3b = ThoughtNode('Time Constraints')
|
1162 |
+
B3c = ThoughtNode('Legal and Regulatory Constraints')
|
1163 |
+
B3.add_child(B3a)
|
1164 |
+
B3.add_child(B3b)
|
1165 |
+
B3.add_child(B3c)
|
1166 |
+
|
1167 |
+
# Recognize Problem Type children
|
1168 |
+
B4a = ThoughtNode('Simple vs Complex')
|
1169 |
+
B4b = ThoughtNode('Known vs Unknown')
|
1170 |
+
B4c = ThoughtNode('Tame vs Wicked Problems')
|
1171 |
+
B4.add_child(B4a)
|
1172 |
+
B4.add_child(B4b)
|
1173 |
+
B4.add_child(B4c)
|
1174 |
+
|
1175 |
+
# Historical Context children
|
1176 |
+
B5a = ThoughtNode('Previous Attempts')
|
1177 |
+
B5b = ThoughtNode('Lessons Learned')
|
1178 |
+
B5c = ThoughtNode('Environmental Factors')
|
1179 |
+
B5.add_child(B5a)
|
1180 |
+
B5.add_child(B5b)
|
1181 |
+
B5.add_child(B5c)
|
1182 |
+
|
1183 |
+
# Problem Analysis children
|
1184 |
+
C1 = ThoughtNode('Root Cause Analysis')
|
1185 |
+
C2 = ThoughtNode('System Mapping')
|
1186 |
+
C3 = ThoughtNode('Data Collection')
|
1187 |
+
C4 = ThoughtNode('Impact Assessment')
|
1188 |
+
C5 = ThoughtNode('Theoretical Framework')
|
1189 |
+
problem_analysis.add_child(C1)
|
1190 |
+
problem_analysis.add_child(C2)
|
1191 |
+
problem_analysis.add_child(C3)
|
1192 |
+
problem_analysis.add_child(C4)
|
1193 |
+
problem_analysis.add_child(C5)
|
1194 |
+
|
1195 |
+
# Root Cause Analysis children
|
1196 |
+
C1a = ThoughtNode('5 Whys Technique')
|
1197 |
+
C1b = ThoughtNode('Fishbone Diagram')
|
1198 |
+
C1c = ThoughtNode('Pareto Analysis')
|
1199 |
+
C1.add_child(C1a)
|
1200 |
+
C1.add_child(C1b)
|
1201 |
+
C1.add_child(C1c)
|
1202 |
+
|
1203 |
+
# System Mapping children
|
1204 |
+
C2a = ThoughtNode('Causal Loop Diagrams')
|
1205 |
+
C2b = ThoughtNode('Stock and Flow Models')
|
1206 |
+
C2c = ThoughtNode('Network Analysis')
|
1207 |
+
C2.add_child(C2a)
|
1208 |
+
C2.add_child(C2b)
|
1209 |
+
C2.add_child(C2c)
|
1210 |
+
|
1211 |
+
# Data Collection children
|
1212 |
+
C3a = ThoughtNode('Quantitative Data')
|
1213 |
+
C3b = ThoughtNode('Qualitative Data')
|
1214 |
+
C3c = ThoughtNode('Data Validation')
|
1215 |
+
C3.add_child(C3a)
|
1216 |
+
C3.add_child(C3b)
|
1217 |
+
C3.add_child(C3c)
|
1218 |
+
|
1219 |
+
# Quantitative Data children
|
1220 |
+
C3a1 = ThoughtNode('Surveys and Questionnaires')
|
1221 |
+
C3a2 = ThoughtNode('Experimental Data')
|
1222 |
+
C3a3 = ThoughtNode('Big Data Analytics')
|
1223 |
+
C3a.add_child(C3a1)
|
1224 |
+
C3a.add_child(C3a2)
|
1225 |
+
C3a.add_child(C3a3)
|
1226 |
+
|
1227 |
+
# Qualitative Data children
|
1228 |
+
C3b1 = ThoughtNode('Interviews')
|
1229 |
+
C3b2 = ThoughtNode('Focus Groups')
|
1230 |
+
C3b3 = ThoughtNode('Observational Studies')
|
1231 |
+
C3b.add_child(C3b1)
|
1232 |
+
C3b.add_child(C3b2)
|
1233 |
+
C3b.add_child(C3b3)
|
1234 |
+
|
1235 |
+
# Data Validation children
|
1236 |
+
C3c1 = ThoughtNode('Statistical Validation')
|
1237 |
+
C3c2 = ThoughtNode('Cross-Validation')
|
1238 |
+
C3c3 = ThoughtNode('Expert Review')
|
1239 |
+
C3c.add_child(C3c1)
|
1240 |
+
C3c.add_child(C3c2)
|
1241 |
+
C3c.add_child(C3c3)
|
1242 |
+
|
1243 |
+
# Impact Assessment children
|
1244 |
+
C4a = ThoughtNode('Environmental Impact')
|
1245 |
+
C4b = ThoughtNode('Social Impact')
|
1246 |
+
C4c = ThoughtNode('Economic Impact')
|
1247 |
+
C4.add_child(C4a)
|
1248 |
+
C4.add_child(C4b)
|
1249 |
+
C4.add_child(C4c)
|
1250 |
+
|
1251 |
+
# Theoretical Framework children
|
1252 |
+
C5a = ThoughtNode('Literature Review')
|
1253 |
+
C5b = ThoughtNode('Conceptual Modeling')
|
1254 |
+
C5c = ThoughtNode('Hypothesis Formation')
|
1255 |
+
C5.add_child(C5a)
|
1256 |
+
C5.add_child(C5b)
|
1257 |
+
C5.add_child(C5c)
|
1258 |
+
|
1259 |
+
# Solution Generation children
|
1260 |
+
D1 = ThoughtNode('Creative Problem Solving')
|
1261 |
+
D2 = ThoughtNode('Analytical Approach')
|
1262 |
+
D3 = ThoughtNode('Mathematical Computation')
|
1263 |
+
D4 = ThoughtNode('Decision Making')
|
1264 |
+
solution_generation.add_child(D1)
|
1265 |
+
solution_generation.add_child(D2)
|
1266 |
+
solution_generation.add_child(D3)
|
1267 |
+
solution_generation.add_child(D4)
|
1268 |
+
|
1269 |
+
# Action Planning, Resource Allocation, Change Management children (implementation phase)
|
1270 |
+
E1 = ThoughtNode('Action Planning')
|
1271 |
+
E2 = ThoughtNode('Resource Allocation')
|
1272 |
+
E3 = ThoughtNode('Change Management')
|
1273 |
+
implementation.add_child(E1)
|
1274 |
+
implementation.add_child(E2)
|
1275 |
+
implementation.add_child(E3)
|
1276 |
+
|
1277 |
+
# Verification, Performance Metrics, Feedback Loops, Continuous Improvement children (evaluation phase)
|
1278 |
+
F1 = ThoughtNode('Verification')
|
1279 |
+
F2 = ThoughtNode('Performance Metrics')
|
1280 |
+
F3 = ThoughtNode('Feedback Loops')
|
1281 |
+
F4 = ThoughtNode('Continuous Improvement')
|
1282 |
+
evaluation_adjustment.add_child(F1)
|
1283 |
+
evaluation_adjustment.add_child(F2)
|
1284 |
+
evaluation_adjustment.add_child(F3)
|
1285 |
+
evaluation_adjustment.add_child(F4)
|
1286 |
+
|
1287 |
+
# Cross-Cutting Considerations children
|
1288 |
+
G = ThoughtNode('Cross-Cutting Considerations')
|
1289 |
+
root.add_child(G)
|
1290 |
+
|
1291 |
+
# Cross-Cutting Considerations children
|
1292 |
+
G1 = ThoughtNode('Ethical Framework')
|
1293 |
+
G2 = ThoughtNode('Stakeholder Management')
|
1294 |
+
G3 = ThoughtNode('Interdisciplinary Connections')
|
1295 |
+
G4 = ThoughtNode('Technological Integration')
|
1296 |
+
G5 = ThoughtNode('Emotional Intelligence')
|
1297 |
+
G6 = ThoughtNode('Collaborative Problem Solving')
|
1298 |
+
G7 = ThoughtNode('Computational Considerations') # Assuming H was intended as G7
|
1299 |
+
G8 = ThoughtNode('Order of Operations') # Assuming I was intended as G8
|
1300 |
+
G9 = ThoughtNode('Critical Thinking') # Assuming J was intended as G9
|
1301 |
+
G10 = ThoughtNode('Future Perspective') # Assuming K was intended as G10
|
1302 |
+
G11 = ThoughtNode('Learning and Adaptation') # Assuming L was intended as G11
|
1303 |
+
G.add_child(G1)
|
1304 |
+
G.add_child(G2)
|
1305 |
+
G.add_child(G3)
|
1306 |
+
G.add_child(G4)
|
1307 |
+
G.add_child(G5)
|
1308 |
+
G.add_child(G6)
|
1309 |
+
G.add_child(G7)
|
1310 |
+
G.add_child(G8)
|
1311 |
+
G.add_child(G9)
|
1312 |
+
G.add_child(G10)
|
1313 |
+
G.add_child(G11)
|
1314 |
+
|
1315 |
+
# Ethical Framework children
|
1316 |
+
G1a = ThoughtNode('Value-based Decision Making')
|
1317 |
+
G1b = ThoughtNode('Long-term Consequences')
|
1318 |
+
G1.add_child(G1a)
|
1319 |
+
G1.add_child(G1b)
|
1320 |
+
|
1321 |
+
# Value-based Decision Making children
|
1322 |
+
G1a1 = ThoughtNode('Ethical Theories Application')
|
1323 |
+
G1a2 = ThoughtNode('Moral Dilemma Resolution')
|
1324 |
+
G1a.add_child(G1a1)
|
1325 |
+
G1a.add_child(G1a2)
|
1326 |
+
|
1327 |
+
# Long-term Consequences children
|
1328 |
+
G1b1 = ThoughtNode('Sustainability Assessment')
|
1329 |
+
G1b2 = ThoughtNode('Intergenerational Impact')
|
1330 |
+
G1b.add_child(G1b1)
|
1331 |
+
G1b.add_child(G1b2)
|
1332 |
+
|
1333 |
+
# Stakeholder Management children
|
1334 |
+
G2a = ThoughtNode('Direct Stakeholders')
|
1335 |
+
G2b = ThoughtNode('Indirect Stakeholders')
|
1336 |
+
G2c = ThoughtNode('Conflicting Interests')
|
1337 |
+
G2.add_child(G2a)
|
1338 |
+
G2.add_child(G2b)
|
1339 |
+
G2.add_child(G2c)
|
1340 |
+
|
1341 |
+
# Conflicting Interests children
|
1342 |
+
G2c1 = ThoughtNode('Negotiation Strategies')
|
1343 |
+
G2c2 = ThoughtNode('Conflict Resolution Techniques')
|
1344 |
+
G2c.add_child(G2c1)
|
1345 |
+
G2c.add_child(G2c2)
|
1346 |
+
|
1347 |
+
# Interdisciplinary Connections children
|
1348 |
+
G3a = ThoughtNode('Related Fields')
|
1349 |
+
G3b = ThoughtNode('Cross-disciplinary Impact')
|
1350 |
+
G3.add_child(G3a)
|
1351 |
+
G3.add_child(G3b)
|
1352 |
+
|
1353 |
+
# Related Fields children
|
1354 |
+
G3a1 = ThoughtNode('Cross-domain Knowledge Transfer')
|
1355 |
+
G3a2 = ThoughtNode('Interdisciplinary Collaboration')
|
1356 |
+
G3a.add_child(G3a1)
|
1357 |
+
G3a.add_child(G3a2)
|
1358 |
+
|
1359 |
+
# Cross-disciplinary Impact children
|
1360 |
+
G3b1 = ThoughtNode('Synergy Identification')
|
1361 |
+
G3b2 = ThoughtNode('Holistic Impact Assessment')
|
1362 |
+
G3b.add_child(G3b1)
|
1363 |
+
G3b.add_child(G3b2)
|
1364 |
+
|
1365 |
+
# Technological Integration children
|
1366 |
+
G4a = ThoughtNode('AI-assisted Problem Solving')
|
1367 |
+
G4b = ThoughtNode('Data-driven Insights')
|
1368 |
+
G4c = ThoughtNode('Digital Collaboration Tools')
|
1369 |
+
G4.add_child(G4a)
|
1370 |
+
G4.add_child(G4b)
|
1371 |
+
G4.add_child(G4c)
|
1372 |
+
|
1373 |
+
# AI-assisted Problem Solving children
|
1374 |
+
G4a1 = ThoughtNode('Machine Learning Models')
|
1375 |
+
G4a2 = ThoughtNode('Natural Language Processing')
|
1376 |
+
G4a.add_child(G4a1)
|
1377 |
+
G4a.add_child(G4a2)
|
1378 |
+
|
1379 |
+
# Data-driven Insights children
|
1380 |
+
G4b1 = ThoughtNode('Big Data Analytics')
|
1381 |
+
G4b2 = ThoughtNode('Predictive Modeling')
|
1382 |
+
G4b.add_child(G4b1)
|
1383 |
+
G4b.add_child(G4b2)
|
1384 |
+
|
1385 |
+
# Digital Collaboration Tools children
|
1386 |
+
G4c1 = ThoughtNode('Project Management Platforms')
|
1387 |
+
G4c2 = ThoughtNode('Virtual Reality Collaboration')
|
1388 |
+
G4c.add_child(G4c1)
|
1389 |
+
G4c.add_child(G4c2)
|
1390 |
+
|
1391 |
+
# Emotional Intelligence children
|
1392 |
+
G5a = ThoughtNode('Self-Awareness')
|
1393 |
+
G5b = ThoughtNode('Empathy')
|
1394 |
+
G5c = ThoughtNode('Stress Management')
|
1395 |
+
G5.add_child(G5a)
|
1396 |
+
G5.add_child(G5b)
|
1397 |
+
G5.add_child(G5c)
|
1398 |
+
|
1399 |
+
# Self-Awareness children
|
1400 |
+
G5a1 = ThoughtNode('Emotional Recognition')
|
1401 |
+
G5a2 = ThoughtNode('Personal Bias Identification')
|
1402 |
+
G5a.add_child(G5a1)
|
1403 |
+
G5a.add_child(G5a2)
|
1404 |
+
|
1405 |
+
# Empathy children
|
1406 |
+
G5b1 = ThoughtNode('Perspective Taking')
|
1407 |
+
G5b2 = ThoughtNode('Active Listening')
|
1408 |
+
G5b.add_child(G5b1)
|
1409 |
+
G5b.add_child(G5b2)
|
1410 |
+
|
1411 |
+
# Stress Management children
|
1412 |
+
G5c1 = ThoughtNode('Mindfulness Techniques')
|
1413 |
+
G5c2 = ThoughtNode('Resilience Building')
|
1414 |
+
G5c.add_child(G5c1)
|
1415 |
+
G5c.add_child(G5c2)
|
1416 |
+
|
1417 |
+
# Collaborative Problem Solving children
|
1418 |
+
G6a = ThoughtNode('Team Dynamics')
|
1419 |
+
G6b = ThoughtNode('Communication Strategies')
|
1420 |
+
G6c = ThoughtNode('Conflict Resolution')
|
1421 |
+
G6.add_child(G6a)
|
1422 |
+
G6.add_child(G6b)
|
1423 |
+
G6.add_child(G6c)
|
1424 |
+
|
1425 |
+
# Team Dynamics children
|
1426 |
+
G6a1 = ThoughtNode('Team Formation Strategies')
|
1427 |
+
G6a2 = ThoughtNode('Role Assignment')
|
1428 |
+
G6a.add_child(G6a1)
|
1429 |
+
G6a.add_child(G6a2)
|
1430 |
+
|
1431 |
+
# Communication Strategies children
|
1432 |
+
G6b1 = ThoughtNode('Clear Messaging')
|
1433 |
+
G6b2 = ThoughtNode('Feedback Mechanisms')
|
1434 |
+
G6b.add_child(G6b1)
|
1435 |
+
G6b.add_child(G6b2)
|
1436 |
+
|
1437 |
+
# Conflict Resolution children
|
1438 |
+
G6c1 = ThoughtNode('Mediation Techniques')
|
1439 |
+
G6c2 = ThoughtNode('Consensus Building')
|
1440 |
+
G6c.add_child(G6c1)
|
1441 |
+
G6c.add_child(G6c2)
|
1442 |
+
|
1443 |
+
# Computational Considerations children
|
1444 |
+
G7a = ThoughtNode('CPU Operations')
|
1445 |
+
G7b = ThoughtNode('GPU Parallelization')
|
1446 |
+
G7c = ThoughtNode('Floating-Point Precision')
|
1447 |
+
G7.add_child(G7a)
|
1448 |
+
G7.add_child(G7b)
|
1449 |
+
G7.add_child(G7c)
|
1450 |
+
|
1451 |
+
# CPU Operations children
|
1452 |
+
G7a1 = ThoughtNode('Instruction Set Architecture')
|
1453 |
+
G7a2 = ThoughtNode('Pipelining and Parallelism')
|
1454 |
+
G7a.add_child(G7a1)
|
1455 |
+
G7a.add_child(G7a2)
|
1456 |
+
|
1457 |
+
# GPU Parallelization children
|
1458 |
+
G7b1 = ThoughtNode('CUDA Programming')
|
1459 |
+
G7b2 = ThoughtNode('OpenCL Framework')
|
1460 |
+
G7b.add_child(G7b1)
|
1461 |
+
G7b.add_child(G7b2)
|
1462 |
+
|
1463 |
+
# Floating-Point Precision children
|
1464 |
+
G7c1 = ThoughtNode('IEEE 754 Standard')
|
1465 |
+
G7c2 = ThoughtNode('Error Propagation Analysis')
|
1466 |
+
G7c.add_child(G7c1)
|
1467 |
+
G7c.add_child(G7c2)
|
1468 |
+
|
1469 |
+
# Order of Operations children
|
1470 |
+
G8a = ThoughtNode('Parentheses')
|
1471 |
+
G8b = ThoughtNode('Exponents')
|
1472 |
+
G8c = ThoughtNode('Multiplication and Division')
|
1473 |
+
G8d = ThoughtNode('Addition and Subtraction')
|
1474 |
+
G8.add_child(G8a)
|
1475 |
+
G8.add_child(G8b)
|
1476 |
+
G8.add_child(G8c)
|
1477 |
+
G8.add_child(G8d)
|
1478 |
+
|
1479 |
+
# Critical Thinking children
|
1480 |
+
G9a = ThoughtNode('Assumptions Questioning')
|
1481 |
+
G9b = ThoughtNode('Bias Recognition')
|
1482 |
+
G9.add_child(G9a)
|
1483 |
+
G9.add_child(G9b)
|
1484 |
+
|
1485 |
+
# Assumptions Questioning children
|
1486 |
+
G9a1 = ThoughtNode('Socratic Questioning')
|
1487 |
+
G9a2 = ThoughtNode('Devil\'s Advocate Approach')
|
1488 |
+
G9a.add_child(G9a1)
|
1489 |
+
G9a.add_child(G9a2)
|
1490 |
+
|
1491 |
+
# Bias Recognition children
|
1492 |
+
G9b1 = ThoughtNode('Cognitive Bias Identification')
|
1493 |
+
G9b2 = ThoughtNode('Debiasing Techniques')
|
1494 |
+
G9b.add_child(G9b1)
|
1495 |
+
G9b.add_child(G9b2)
|
1496 |
+
|
1497 |
+
# Future Perspective children
|
1498 |
+
G10a = ThoughtNode('Short-term Projections')
|
1499 |
+
G10b = ThoughtNode('Long-term Scenarios')
|
1500 |
+
G10c = ThoughtNode('Potential Impacts')
|
1501 |
+
G10.add_child(G10a)
|
1502 |
+
G10.add_child(G10b)
|
1503 |
+
G10.add_child(G10c)
|
1504 |
+
|
1505 |
+
# Short-term Projections children
|
1506 |
+
G10a1 = ThoughtNode('Trend Analysis')
|
1507 |
+
G10a2 = ThoughtNode('Scenario Planning')
|
1508 |
+
G10a.add_child(G10a1)
|
1509 |
+
G10a.add_child(G10a2)
|
1510 |
+
|
1511 |
+
# Long-term Scenarios children
|
1512 |
+
G10b1 = ThoughtNode('Futures Wheel')
|
1513 |
+
G10b2 = ThoughtNode('Backcasting')
|
1514 |
+
G10b.add_child(G10b1)
|
1515 |
+
G10b.add_child(G10b2)
|
1516 |
+
|
1517 |
+
# Potential Impacts children
|
1518 |
+
G10c1 = ThoughtNode('Risk Assessment')
|
1519 |
+
G10c2 = ThoughtNode('Opportunity Identification')
|
1520 |
+
G10c.add_child(G10c1)
|
1521 |
+
G10c.add_child(G10c2)
|
1522 |
+
|
1523 |
+
# Learning and Adaptation children
|
1524 |
+
G11a = ThoughtNode('Reflective Practice')
|
1525 |
+
G11b = ThoughtNode('Knowledge Transfer')
|
1526 |
+
G11c = ThoughtNode('Adaptive Problem Solving')
|
1527 |
+
G11.add_child(G11a)
|
1528 |
+
G11.add_child(G11b)
|
1529 |
+
G11.add_child(G11c)
|
1530 |
+
|
1531 |
+
# Reflective Practice children
|
1532 |
+
G11a1 = ThoughtNode('After Action Review')
|
1533 |
+
G11a2 = ThoughtNode('Learning Journals')
|
1534 |
+
G11a.add_child(G11a1)
|
1535 |
+
G11a.add_child(G11a2)
|
1536 |
+
|
1537 |
+
# Knowledge Transfer children
|
1538 |
+
G11b1 = ThoughtNode('Best Practice Documentation')
|
1539 |
+
G11b2 = ThoughtNode('Mentoring Programs')
|
1540 |
+
G11b.add_child(G11b1)
|
1541 |
+
G11b.add_child(G11b2)
|
1542 |
+
|
1543 |
+
# Adaptive Problem Solving children
|
1544 |
+
G11c1 = ThoughtNode('Iterative Approaches')
|
1545 |
+
G11c2 = ThoughtNode('Flexibility in Methodology')
|
1546 |
+
G11c.add_child(G11c1)
|
1547 |
+
G11c.add_child(G11c2)
|
1548 |
+
|
1549 |
+
return root
|
1550 |
+
|
1551 |
+
def traverse_tree(node, action_list):
|
1552 |
+
if node.name not in action_list:
|
1553 |
+
action_list.append(node.name)
|
1554 |
+
for child in node.children:
|
1555 |
+
traverse_tree(child, action_list)
|
1556 |
+
|
1557 |
+
|
1558 |
+
|
1559 |
+
def infer(query, world_model_components, root_thought_node, tokenizer, max_length=2000, inference_mode='world_model', beam_size=5, n_tokens_predict=3, mcts_iterations=10, exploration_constant=1.414):
|
1560 |
+
|
1561 |
+
|
1562 |
+
"""
|
1563 |
+
Perform inference given a query, utilizing the Tree of Thought and MCTS with multi-token beam search.
|
1564 |
+
|
1565 |
+
Args:
|
1566 |
+
query (str): The input query or prompt.
|
1567 |
+
world_model_components (tuple): Tuple containing the model components.
|
1568 |
+
root_thought_node (ThoughtNode): The root node of the Tree of Thought.
|
1569 |
+
tokenizer (transformers.PreTrainedTokenizer): The tokenizer used.
|
1570 |
+
max_length (int): Maximum length for the generated sequence.
|
1571 |
+
inference_mode (str): Inference mode ('world_model', 'without_world_model', 'world_model_tree_of_thought')
|
1572 |
+
beam_size (int): Size of the beam for beam search
|
1573 |
+
n_tokens_predict (int): Number of tokens to predict at each step
|
1574 |
+
|
1575 |
+
Returns:
|
1576 |
+
List[str] or str: The sequence of actions (thoughts) selected or generated text.
|
1577 |
+
"""
|
1578 |
+
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer = world_model_components
|
1579 |
+
|
1580 |
+
# Tokenize and encode the query
|
1581 |
+
input_ids = tokenizer.encode(query, return_tensors='pt').to(device)
|
1582 |
+
attention_mask = (input_ids != tokenizer.pad_token_id).long()
|
1583 |
+
|
1584 |
+
if inference_mode == 'without_world_model':
|
1585 |
+
# Directly use the transformer model to generate text with beam search
|
1586 |
+
with torch.no_grad():
|
1587 |
+
generated_sequences = model_transformer.generate_with_beam_search(
|
1588 |
+
src=input_ids,
|
1589 |
+
tokenizer=tokenizer,
|
1590 |
+
beam_size=beam_size,
|
1591 |
+
max_length=max_length,
|
1592 |
+
n_tokens_predict=n_tokens_predict,
|
1593 |
+
temperature=args.temperature
|
1594 |
+
)
|
1595 |
+
best_sequence, best_score = generated_sequences[0]
|
1596 |
+
generated_text = tokenizer.decode(best_sequence[0], skip_special_tokens=True)
|
1597 |
+
return generated_text
|
1598 |
+
|
1599 |
+
else:
|
1600 |
+
# Use the world model components
|
1601 |
+
with torch.no_grad():
|
1602 |
+
transformer_output = model_transformer(input_ids, input_ids)
|
1603 |
+
# Get the initial state representation
|
1604 |
+
initial_representation = representation_network(transformer_output) # Shape: (batch_size=1, seq_len, state_dim)
|
1605 |
+
initial_representation = initial_representation[:, -1, :].unsqueeze(1) # Shape: (batch_size=1, 1, state_dim)
|
1606 |
+
initial_state = State(
|
1607 |
+
representation=initial_representation,
|
1608 |
+
dynamics_network=dynamics_network,
|
1609 |
+
action_encoder=action_encoder,
|
1610 |
+
thought_node=root_thought_node
|
1611 |
+
)
|
1612 |
+
if inference_mode == 'world_model_tree_of_thought':
|
1613 |
+
# Use MCTS with Tree of Thought and multi-token beam search
|
1614 |
+
mcts = MCTS(prediction_network, dynamics_network, action_encoder, num_iterations=mcts_iterations, exploration_constant=exploration_constant)
|
1615 |
+
|
1616 |
+
current_state = initial_state
|
1617 |
+
thought_sequence = []
|
1618 |
+
|
1619 |
+
for _ in range(max_length // n_tokens_predict):
|
1620 |
+
best_actions = mcts.search_with_beam(current_state)
|
1621 |
+
|
1622 |
+
thought_sequence.extend(best_actions)
|
1623 |
+
|
1624 |
+
# Apply the best actions to get the next state
|
1625 |
+
for action in best_actions:
|
1626 |
+
current_state = current_state.apply_action(action)
|
1627 |
+
|
1628 |
+
# Check if we've reached a leaf node (no further actions)
|
1629 |
+
if len(current_state.thought_node.children) == 0:
|
1630 |
+
break
|
1631 |
+
|
1632 |
+
return thought_sequence
|
1633 |
+
else:
|
1634 |
+
# Use the world model without Tree of Thought, but with multi-token beam search
|
1635 |
+
beam = [(initial_state, 0.0, torch.zeros(1, device=device), torch.zeros(1, device=device))] # (state, score, cum_entropy, cum_variance)
|
1636 |
+
|
1637 |
+
for _ in range(max_length // n_tokens_predict):
|
1638 |
+
all_candidates = []
|
1639 |
+
for state, score, cum_entropy, cum_variance in beam:
|
1640 |
+
policy_logits, _ = prediction_network(state.representation)
|
1641 |
+
probs = F.softmax(policy_logits / args.temperature, dim=-1)
|
1642 |
+
entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1)
|
1643 |
+
variance = torch.var(probs, dim=-1)
|
1644 |
+
|
1645 |
+
topk_probs, topk_indices = torch.topk(probs, k=beam_size, dim=-1)
|
1646 |
+
|
1647 |
+
for i in range(beam_size ** n_tokens_predict):
|
1648 |
+
indices = [i // (beam_size ** j) % beam_size for j in range(n_tokens_predict)]
|
1649 |
+
new_actions = [index_to_action[topk_indices[0, j, indices[j]].item()] for j in range(n_tokens_predict)]
|
1650 |
+
new_score = score + torch.sum(torch.log(topk_probs[0, range(n_tokens_predict), indices]))
|
1651 |
+
new_entropy = cum_entropy + torch.sum(entropy[0, indices])
|
1652 |
+
new_variance = cum_variance + torch.sum(variance[0, indices])
|
1653 |
+
|
1654 |
+
new_state = state
|
1655 |
+
for action in new_actions:
|
1656 |
+
new_state = new_state.apply_action(action)
|
1657 |
+
|
1658 |
+
all_candidates.append((new_state, new_score, new_entropy, new_variance, new_actions))
|
1659 |
+
|
1660 |
+
# Select top beam_size candidates
|
1661 |
+
beam = sorted(all_candidates, key=lambda x: x[1] - 0.1 * x[2] + 0.05 * x[3], reverse=True)[:beam_size]
|
1662 |
+
|
1663 |
+
# Accumulate actions
|
1664 |
+
if not thought_sequence:
|
1665 |
+
thought_sequence = [b[4] for b in beam]
|
1666 |
+
else:
|
1667 |
+
for i, b in enumerate(beam):
|
1668 |
+
thought_sequence[i].extend(b[4])
|
1669 |
+
|
1670 |
+
# Return the top sequence
|
1671 |
+
return thought_sequence[0]
|
1672 |
+
|
1673 |
+
|
1674 |
+
def train_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
|
1675 |
+
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, _ = world_model_components
|
1676 |
+
representation_network.train()
|
1677 |
+
dynamics_network.train()
|
1678 |
+
prediction_network.train()
|
1679 |
+
action_encoder.train()
|
1680 |
+
ppo_agent.policy_network.train()
|
1681 |
+
|
1682 |
+
total_loss = 0.0
|
1683 |
+
optimizer.zero_grad()
|
1684 |
+
print(f"Starting World Model training epoch with {len(train_loader)} batches...")
|
1685 |
+
|
1686 |
+
for i, batch in enumerate(train_loader):
|
1687 |
+
print(f"Processing batch {i+1}/{len(train_loader)}...")
|
1688 |
+
|
1689 |
+
# Move batches to the device
|
1690 |
+
src_batch = batch['input_ids'].to(device)
|
1691 |
+
tgt_batch = batch['labels'].to(device)
|
1692 |
+
|
1693 |
+
with torch.amp.autocast(device_type='cuda'):
|
1694 |
+
print("Forward pass through Transformer (frozen)...")
|
1695 |
+
with torch.no_grad():
|
1696 |
+
transformer_output = model_transformer(src_batch, tgt_batch[:, :-1])
|
1697 |
+
|
1698 |
+
# World Model - Representation
|
1699 |
+
state_representation = representation_network(transformer_output)
|
1700 |
+
|
1701 |
+
# For simplicity, let's assume true actions are provided (e.g., next tokens)
|
1702 |
+
true_actions = tgt_batch[:, :-1]
|
1703 |
+
action_sequences = true_actions
|
1704 |
+
|
1705 |
+
# Get action embeddings
|
1706 |
+
action_embeddings = action_encoder(action_sequences)
|
1707 |
+
|
1708 |
+
# Apply dynamics network
|
1709 |
+
predicted_next_state_batch = dynamics_network(state_representation, action_embeddings)
|
1710 |
+
|
1711 |
+
# Prediction Network - Policy logits and value
|
1712 |
+
policy_logits, value_estimates = prediction_network(predicted_next_state_batch)
|
1713 |
+
|
1714 |
+
# Define true_policy and true_value as placeholders on the GPU
|
1715 |
+
true_policy = F.one_hot(true_actions, num_classes=input_dim).float()
|
1716 |
+
true_value = torch.zeros_like(value_estimates).to(device)
|
1717 |
+
|
1718 |
+
# Compute individual losses
|
1719 |
+
ppo_loss = ppo_agent.compute_loss(
|
1720 |
+
state_representation,
|
1721 |
+
torch.zeros_like(true_actions, dtype=torch.float32).to(device),
|
1722 |
+
true_actions,
|
1723 |
+
torch.zeros_like(value_estimates, dtype=torch.float32).to(device),
|
1724 |
+
torch.zeros_like(value_estimates, dtype=torch.float32).to(device)
|
1725 |
+
)
|
1726 |
+
|
1727 |
+
info_nce = InfoNCE_Loss()(
|
1728 |
+
state_representation.reshape(-1, state_dim),
|
1729 |
+
F.dropout(state_representation.reshape(-1, state_dim), p=0.1, training=True)
|
1730 |
+
)
|
1731 |
+
|
1732 |
+
|
1733 |
+
covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
|
1734 |
+
dynamics_loss = DynamicsPerformanceLoss()(state_representation, predicted_next_state_batch)
|
1735 |
+
|
1736 |
+
perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
|
1737 |
+
thought_loss = ThoughtConsistencyLoss()(predicted_next_state_batch, perturbed_next_state)
|
1738 |
+
|
1739 |
+
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
|
1740 |
+
action_diversity = ActionDiversityReward()(action_embeddings.view(-1, embed_dim))
|
1741 |
+
|
1742 |
+
mcts_best_values = torch.zeros(true_actions.size(0)).to(device)
|
1743 |
+
etv = ExpectedThoughtValueLoss()(mcts_best_values)
|
1744 |
+
|
1745 |
+
visit_counts = torch.ones(true_actions.size(0), policy_logits.size(-1)).to(device)
|
1746 |
+
exploration = ExplorationRegularization()(visit_counts)
|
1747 |
+
|
1748 |
+
old_policy = F.softmax(policy_logits.detach(), dim=-1)
|
1749 |
+
new_policy = F.softmax(policy_logits, dim=-1)
|
1750 |
+
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
|
1751 |
+
|
1752 |
+
# Total Loss
|
1753 |
+
loss = (
|
1754 |
+
ppo_loss +
|
1755 |
+
info_nce +
|
1756 |
+
covariance +
|
1757 |
+
dynamics_loss +
|
1758 |
+
thought_loss +
|
1759 |
+
pv_loss +
|
1760 |
+
action_diversity +
|
1761 |
+
etv +
|
1762 |
+
exploration +
|
1763 |
+
kl_loss
|
1764 |
+
)
|
1765 |
+
loss = loss / args.accumulation_steps
|
1766 |
+
|
1767 |
+
print("Backward pass...")
|
1768 |
+
scaler.scale(loss).backward()
|
1769 |
+
|
1770 |
+
if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
|
1771 |
+
print("Gradient clipping...")
|
1772 |
+
scaler.unscale_(optimizer)
|
1773 |
+
torch.nn.utils.clip_grad_norm_(
|
1774 |
+
[param for group in optimizer.param_groups for param in group['params']],
|
1775 |
+
args.max_grad_norm
|
1776 |
+
)
|
1777 |
+
|
1778 |
+
print("Optimizer step...")
|
1779 |
+
scaler.step(optimizer)
|
1780 |
+
scaler.update()
|
1781 |
+
|
1782 |
+
print("Zeroing gradients...")
|
1783 |
+
optimizer.zero_grad()
|
1784 |
+
|
1785 |
+
print("Updating learning rate...")
|
1786 |
+
scheduler.step()
|
1787 |
+
|
1788 |
+
total_loss += loss.item() * args.accumulation_steps
|
1789 |
+
|
1790 |
+
# Print individual losses and total loss for this batch
|
1791 |
+
print(f"Batch {i+1} completed. Losses:")
|
1792 |
+
print(f" PPO Loss: {ppo_loss.item():.4f}")
|
1793 |
+
print(f" InfoNCE Loss: {info_nce.item():.4f}")
|
1794 |
+
print(f" Covariance Loss: {covariance.item():.4f}")
|
1795 |
+
print(f" Dynamics Loss: {dynamics_loss.item():.4f}")
|
1796 |
+
print(f" Thought Consistency Loss: {thought_loss.item():.4f}")
|
1797 |
+
print(f" Policy-Value Loss: {pv_loss.item():.4f}")
|
1798 |
+
print(f" Action Diversity Loss: {action_diversity.item():.4f}")
|
1799 |
+
print(f" Expected Thought Value Loss: {etv.item():.4f}")
|
1800 |
+
print(f" Exploration Loss: {exploration.item():.4f}")
|
1801 |
+
print(f" KL Divergence Loss: {kl_loss.item():.4f}")
|
1802 |
+
print(f" Total Loss: {loss.item():.4f}")
|
1803 |
+
|
1804 |
+
avg_loss = total_loss / len(train_loader)
|
1805 |
+
print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
|
1806 |
+
return avg_loss
|
1807 |
+
|
1808 |
+
def train_epoch_language_model(model, train_loader, optimizer, scheduler, scaler, args):
|
1809 |
+
model.train()
|
1810 |
+
total_loss = 0.0
|
1811 |
+
optimizer.zero_grad()
|
1812 |
+
print(f"Starting Language Model training epoch with {len(train_loader)} batches...")
|
1813 |
+
|
1814 |
+
for i, batch in enumerate(train_loader):
|
1815 |
+
input_ids = batch['input_ids'].to(device)
|
1816 |
+
labels = batch['labels'].to(device)
|
1817 |
+
|
1818 |
+
with autocast():
|
1819 |
+
outputs = model(input_ids, input_ids)
|
1820 |
+
logits = outputs.view(-1, outputs.size(-1))
|
1821 |
+
labels = labels.view(-1)
|
1822 |
+
loss = F.cross_entropy(logits, labels, ignore_index=model.embedding.padding_idx)
|
1823 |
+
loss = loss / args.accumulation_steps
|
1824 |
+
|
1825 |
+
scaler.scale(loss).backward()
|
1826 |
+
|
1827 |
+
if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
|
1828 |
+
scaler.unscale_(optimizer)
|
1829 |
+
torch.nn.utils.clip_grad_norm_(
|
1830 |
+
[param for group in optimizer.param_groups for param in group['params']],
|
1831 |
+
args.max_grad_norm
|
1832 |
+
)
|
1833 |
+
scaler.step(optimizer)
|
1834 |
+
scaler.update()
|
1835 |
+
optimizer.zero_grad()
|
1836 |
+
scheduler.step()
|
1837 |
+
|
1838 |
+
total_loss += loss.item() * args.accumulation_steps
|
1839 |
+
print(f"Batch {i + 1} completed. Current loss: {loss.item():.4f}")
|
1840 |
+
|
1841 |
+
avg_loss = total_loss / len(train_loader)
|
1842 |
+
print(f"Language Model training epoch completed. Average loss: {avg_loss:.4f}")
|
1843 |
+
return avg_loss
|
1844 |
+
|
1845 |
+
|
1846 |
+
def train_custom_data_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim):
|
1847 |
+
representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, _ = world_model_components
|
1848 |
+
representation_network.train()
|
1849 |
+
dynamics_network.train()
|
1850 |
+
prediction_network.train()
|
1851 |
+
action_encoder.train()
|
1852 |
+
ppo_agent.policy_network.train()
|
1853 |
+
|
1854 |
+
total_loss = 0.0
|
1855 |
+
optimizer.zero_grad()
|
1856 |
+
print(f"Starting World Model training epoch with {len(train_loader)} batches...")
|
1857 |
+
|
1858 |
+
for i, batch in enumerate(train_loader):
|
1859 |
+
print(f"Processing batch {i+1}/{len(train_loader)}...")
|
1860 |
+
|
1861 |
+
# Move batches to the device
|
1862 |
+
input_ids = batch['input_ids'].to(device)
|
1863 |
+
attention_mask = batch['attention_mask'].to(device)
|
1864 |
+
episode_reward = batch['episode_reward'].to(device)
|
1865 |
+
loss_value = batch['loss'].to(device)
|
1866 |
+
cosine_similarity = batch['cosine_similarity'].to(device)
|
1867 |
+
rag_performance = batch['rag_performance'].to(device)
|
1868 |
+
ranking_model_performance = batch['ranking_model_performance'].to(device)
|
1869 |
+
|
1870 |
+
with torch.amp.autocast(device_type='cuda'):
|
1871 |
+
print("Forward pass through Transformer (frozen)...")
|
1872 |
+
with torch.no_grad():
|
1873 |
+
transformer_output = model_transformer(input_ids, input_ids)
|
1874 |
+
|
1875 |
+
# World Model - Representation
|
1876 |
+
state_representation = representation_network(transformer_output)
|
1877 |
+
print(f"State representation shape: {state_representation.shape}")
|
1878 |
+
|
1879 |
+
# For simplicity, let's assume true actions are provided (e.g., next tokens)
|
1880 |
+
true_actions = input_ids[:, 1:] # Shift input_ids by 1 to get next tokens
|
1881 |
+
print(f"True actions shape: {true_actions.shape}")
|
1882 |
+
action_sequences = true_actions
|
1883 |
+
|
1884 |
+
# Get action embeddings
|
1885 |
+
action_embeddings = action_encoder(action_sequences)
|
1886 |
+
print(f"Action embeddings shape: {action_embeddings.shape}")
|
1887 |
+
|
1888 |
+
# Ensure state_representation and action_embeddings have the same sequence length
|
1889 |
+
min_seq_len = min(state_representation.size(1), action_embeddings.size(1))
|
1890 |
+
state_representation = state_representation[:, :min_seq_len, :]
|
1891 |
+
action_embeddings = action_embeddings[:, :min_seq_len, :]
|
1892 |
+
|
1893 |
+
print(f"Adjusted state representation shape: {state_representation.shape}")
|
1894 |
+
print(f"Adjusted action embeddings shape: {action_embeddings.shape}")
|
1895 |
+
|
1896 |
+
# Apply dynamics network
|
1897 |
+
predicted_next_state_batch = dynamics_network(state_representation, action_embeddings)
|
1898 |
+
print(f"Predicted next state batch shape: {predicted_next_state_batch.shape}")
|
1899 |
+
|
1900 |
+
# Prediction Network - Policy logits and value
|
1901 |
+
policy_logits, value_estimates = prediction_network(predicted_next_state_batch)
|
1902 |
+
|
1903 |
+
# Adjust true_actions to match the sequence length
|
1904 |
+
true_actions = true_actions[:, :min_seq_len]
|
1905 |
+
|
1906 |
+
# Define true_policy and true_value
|
1907 |
+
true_policy = F.one_hot(true_actions, num_classes=input_dim).float()
|
1908 |
+
true_value = episode_reward.unsqueeze(1).expand(-1, min_seq_len) # Expand to match sequence length
|
1909 |
+
|
1910 |
+
# Compute individual losses
|
1911 |
+
info_nce = InfoNCE_Loss()(
|
1912 |
+
state_representation.reshape(-1, state_dim),
|
1913 |
+
F.dropout(state_representation.reshape(-1, state_dim), p=0.1, training=True)
|
1914 |
+
)
|
1915 |
+
|
1916 |
+
covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1)))
|
1917 |
+
dynamics_loss = DynamicsPerformanceLoss()(state_representation, predicted_next_state_batch)
|
1918 |
+
|
1919 |
+
perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01
|
1920 |
+
thought_loss = ThoughtConsistencyLoss()(predicted_next_state_batch, perturbed_next_state)
|
1921 |
+
|
1922 |
+
pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1))
|
1923 |
+
action_diversity = ActionDiversityReward()(action_embeddings.view(-1, embed_dim))
|
1924 |
+
|
1925 |
+
mcts_best_values = torch.zeros(true_actions.size(0)).to(device)
|
1926 |
+
etv = ExpectedThoughtValueLoss()(mcts_best_values)
|
1927 |
+
|
1928 |
+
visit_counts = torch.ones(true_actions.size(0), policy_logits.size(-1)).to(device)
|
1929 |
+
exploration = ExplorationRegularization()(visit_counts)
|
1930 |
+
|
1931 |
+
old_policy = F.softmax(policy_logits.detach(), dim=-1)
|
1932 |
+
new_policy = F.softmax(policy_logits, dim=-1)
|
1933 |
+
kl_loss = KL_DivergenceLoss()(old_policy, new_policy)
|
1934 |
+
|
1935 |
+
# Compute mean value estimates over the sequence length
|
1936 |
+
value_estimates_mean = value_estimates.squeeze(-1).mean(dim=1) # Shape: [batch_size]
|
1937 |
+
|
1938 |
+
# Add new loss components
|
1939 |
+
rag_loss = F.mse_loss(value_estimates_mean, rag_performance)
|
1940 |
+
ranking_loss = F.mse_loss(value_estimates_mean, ranking_model_performance)
|
1941 |
+
cosine_similarity_loss = 1 - cosine_similarity.mean() # Maximize cosine similarity
|
1942 |
+
|
1943 |
+
# Total Loss
|
1944 |
+
loss = (
|
1945 |
+
info_nce +
|
1946 |
+
covariance +
|
1947 |
+
dynamics_loss +
|
1948 |
+
thought_loss +
|
1949 |
+
pv_loss +
|
1950 |
+
action_diversity +
|
1951 |
+
etv +
|
1952 |
+
exploration +
|
1953 |
+
kl_loss +
|
1954 |
+
rag_loss +
|
1955 |
+
ranking_loss +
|
1956 |
+
cosine_similarity_loss
|
1957 |
+
)
|
1958 |
+
loss = loss / args.accumulation_steps
|
1959 |
+
|
1960 |
+
print("Backward pass...")
|
1961 |
+
scaler.scale(loss).backward()
|
1962 |
+
|
1963 |
+
if (i + 1) % args.accumulation_steps == 0 or (i + 1) == len(train_loader):
|
1964 |
+
print("Gradient clipping...")
|
1965 |
+
scaler.unscale_(optimizer)
|
1966 |
+
torch.nn.utils.clip_grad_norm_(
|
1967 |
+
[param for group in optimizer.param_groups for param in group['params']],
|
1968 |
+
args.max_grad_norm
|
1969 |
+
)
|
1970 |
+
|
1971 |
+
print("Optimizer step...")
|
1972 |
+
scaler.step(optimizer)
|
1973 |
+
scaler.update()
|
1974 |
+
|
1975 |
+
print("Zeroing gradients...")
|
1976 |
+
optimizer.zero_grad()
|
1977 |
+
|
1978 |
+
print("Updating learning rate...")
|
1979 |
+
scheduler.step()
|
1980 |
+
|
1981 |
+
# Print individual losses and total loss for this batch
|
1982 |
+
print(f"Batch {i+1} completed. Losses:")
|
1983 |
+
print(f" InfoNCE Loss: {info_nce.item():.4f}")
|
1984 |
+
print(f" Covariance Loss: {covariance.item():.4f}")
|
1985 |
+
print(f" Dynamics Loss: {dynamics_loss.item():.4f}")
|
1986 |
+
print(f" Thought Consistency Loss: {thought_loss.item():.4f}")
|
1987 |
+
print(f" Policy-Value Loss: {pv_loss.item():.4f}")
|
1988 |
+
print(f" Action Diversity Loss: {action_diversity.item():.4f}")
|
1989 |
+
print(f" Expected Thought Value Loss: {etv.item():.4f}")
|
1990 |
+
print(f" Exploration Loss: {exploration.item():.4f}")
|
1991 |
+
print(f" KL Divergence Loss: {kl_loss.item():.4f}")
|
1992 |
+
print(f" RAG Loss: {rag_loss.item():.4f}")
|
1993 |
+
print(f" Ranking Loss: {ranking_loss.item():.4f}")
|
1994 |
+
print(f" Cosine Similarity Loss: {cosine_similarity_loss.item():.4f}")
|
1995 |
+
print(f" Total Loss: {loss.item():.4f}")
|
1996 |
+
|
1997 |
+
avg_loss = total_loss / len(train_loader)
|
1998 |
+
print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}")
|
1999 |
+
return avg_loss
|
2000 |
+
|
2001 |
+
|
2002 |
+
def main():
|
2003 |
+
args = parse_args()
|
2004 |
+
print("Arguments parsed successfully.")
|
2005 |
+
|
2006 |
+
# Create save directory
|
2007 |
+
os.makedirs(args.save_dir, exist_ok=True)
|
2008 |
+
print(f"Save directory created: {args.save_dir}")
|
2009 |
+
|
2010 |
+
# Load tokenizer
|
2011 |
+
print("Loading tokenizer...")
|
2012 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
2013 |
+
if tokenizer.pad_token is None:
|
2014 |
+
tokenizer.pad_token = tokenizer.eos_token
|
2015 |
+
print("Tokenizer loaded successfully.")
|
2016 |
+
|
2017 |
+
# Define padding_idx and input dimension based on tokenizer
|
2018 |
+
padding_idx = tokenizer.pad_token_id
|
2019 |
+
input_dim = len(tokenizer)
|
2020 |
+
|
2021 |
+
|
2022 |
+
# Initialize the Transformer model on GPU
|
2023 |
+
print("Initializing Transformer model...")
|
2024 |
+
model_transformer = Transformer(
|
2025 |
+
input_dim=input_dim,
|
2026 |
+
d_model=128,
|
2027 |
+
num_heads=4,
|
2028 |
+
num_layers=4,
|
2029 |
+
d_ff=256,
|
2030 |
+
num_experts=2,
|
2031 |
+
output_dim=input_dim,
|
2032 |
+
dropout=0.1,
|
2033 |
+
top_k=2
|
2034 |
+
).to(device)
|
2035 |
+
model_transformer.train()
|
2036 |
+
print("Transformer model initialized on device.")
|
2037 |
+
|
2038 |
+
# Define model parameters (adjusted for speed)
|
2039 |
+
d_model = 32
|
2040 |
+
state_dim = 32
|
2041 |
+
action_dim = d_model
|
2042 |
+
hidden_dim = 64
|
2043 |
+
vocab_dim = input_dim
|
2044 |
+
embed_dim = d_model
|
2045 |
+
|
2046 |
+
# Define World Model components
|
2047 |
+
representation_network = RepresentationNetwork(vocab_dim, d_model, state_dim).to(device)
|
2048 |
+
dynamics_network = DynamicsNetwork(state_dim, action_dim, hidden_dim).to(device)
|
2049 |
+
prediction_network = PredictionNetwork(state_dim, input_dim, 1).to(device)
|
2050 |
+
action_encoder = ActionEncoder(input_dim, action_dim).to(device)
|
2051 |
+
|
2052 |
+
# Initialize PPO Agent
|
2053 |
+
ppo_agent = PPOAgent(
|
2054 |
+
policy_network=prediction_network,
|
2055 |
+
optimizer=optim.AdamW(prediction_network.parameters(), lr=args.learning_rate),
|
2056 |
+
clip_epsilon=0.2,
|
2057 |
+
entropy_coef=0.01,
|
2058 |
+
value_coef=0.5
|
2059 |
+
)
|
2060 |
+
|
2061 |
+
# Bundle World Model components
|
2062 |
+
world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer)
|
2063 |
+
|
2064 |
+
print(f"Current mode: {args.mode}")
|
2065 |
+
if args.mode == 'train':
|
2066 |
+
print("Loading and preprocessing data...")
|
2067 |
+
if args.use_custom_data:
|
2068 |
+
custom_data = load_custom_data_from_files(args.custom_data_paths)
|
2069 |
+
processed_data = preprocess_custom_data(custom_data)
|
2070 |
+
train_loader, eval_loader = load_custom_data(args, tokenizer, processed_data)
|
2071 |
+
print("Custom data loaded and preprocessed successfully.")
|
2072 |
+
else:
|
2073 |
+
train_loader, eval_loader = load_data(args, tokenizer)
|
2074 |
+
print("Default data loaded and preprocessed successfully.")
|
2075 |
+
|
2076 |
+
# Optimizer and Scheduler
|
2077 |
+
optimizer = optim.AdamW(
|
2078 |
+
list(representation_network.parameters()) +
|
2079 |
+
list(dynamics_network.parameters()) +
|
2080 |
+
list(prediction_network.parameters()) +
|
2081 |
+
list(action_encoder.parameters()),
|
2082 |
+
lr=args.learning_rate, weight_decay=args.weight_decay
|
2083 |
+
) if args.train_mode == 'world_model' else optim.AdamW(model_transformer.parameters(), lr=args.learning_rate)
|
2084 |
+
scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs)
|
2085 |
+
scaler = GradScaler()
|
2086 |
+
|
2087 |
+
print(f"Starting {args.train_mode} training...")
|
2088 |
+
|
2089 |
+
for epoch in range(args.num_epochs):
|
2090 |
+
if args.train_mode == 'world_model':
|
2091 |
+
if args.use_custom_data:
|
2092 |
+
avg_loss = train_custom_data_epoch_world_model(
|
2093 |
+
world_model_components,
|
2094 |
+
train_loader,
|
2095 |
+
optimizer,
|
2096 |
+
scheduler,
|
2097 |
+
scaler,
|
2098 |
+
args,
|
2099 |
+
model_transformer,
|
2100 |
+
state_dim,
|
2101 |
+
embed_dim,
|
2102 |
+
input_dim
|
2103 |
+
)
|
2104 |
+
else:
|
2105 |
+
avg_loss = train_epoch_world_model(
|
2106 |
+
world_model_components,
|
2107 |
+
train_loader,
|
2108 |
+
optimizer,
|
2109 |
+
scheduler,
|
2110 |
+
scaler,
|
2111 |
+
args,
|
2112 |
+
model_transformer,
|
2113 |
+
state_dim,
|
2114 |
+
embed_dim,
|
2115 |
+
input_dim
|
2116 |
+
)
|
2117 |
+
else:
|
2118 |
+
avg_loss = train_epoch_language_model(
|
2119 |
+
model_transformer,
|
2120 |
+
train_loader,
|
2121 |
+
optimizer,
|
2122 |
+
scheduler,
|
2123 |
+
scaler,
|
2124 |
+
args
|
2125 |
+
)
|
2126 |
+
|
2127 |
+
print(f"{args.train_mode.capitalize()} training epoch {epoch + 1} completed. Average loss: {avg_loss:.4f}")
|
2128 |
+
|
2129 |
+
# Save models
|
2130 |
+
if args.train_mode == 'world_model':
|
2131 |
+
save_all_models(model_transformer, representation_network, dynamics_network, prediction_network, action_encoder, args.save_dir, epoch + 1)
|
2132 |
+
print(f"Models saved for epoch {epoch + 1}")
|
2133 |
+
else:
|
2134 |
+
torch.save(model_transformer.state_dict(), os.path.join(args.save_dir, f'language_model_epoch_{epoch + 1}.pt'))
|
2135 |
+
print(f"Language model saved for epoch {epoch + 1}")
|
2136 |
+
|
2137 |
+
print("Training completed.")
|
2138 |
+
|
2139 |
+
elif args.mode == 'inference':
|
2140 |
+
print("Entering inference mode...")
|
2141 |
+
# Build Tree of Thought if needed
|
2142 |
+
print("Building Tree of Thought...")
|
2143 |
+
tree_root = build_tree_of_thought()
|
2144 |
+
print("Tree of Thought built successfully.")
|
2145 |
+
|
2146 |
+
# Generate action list
|
2147 |
+
print("Generating action list...")
|
2148 |
+
action_list = []
|
2149 |
+
traverse_tree(tree_root, action_list)
|
2150 |
+
print(f"Action list generated. Total actions: {len(action_list)}")
|
2151 |
+
|
2152 |
+
# Create mappings
|
2153 |
+
global action_to_index, index_to_action
|
2154 |
+
action_to_index = {action: idx for idx, action in enumerate(action_list)}
|
2155 |
+
index_to_action = {idx: action for action, idx in action_to_index.items()}
|
2156 |
+
action_vocab_size = len(action_list)
|
2157 |
+
print(f"Action mappings created. Vocabulary size: {action_vocab_size}")
|
2158 |
+
|
2159 |
+
# Initialize or load models based on the load_model argument
|
2160 |
+
if args.load_model:
|
2161 |
+
print(f"Loading saved model from {args.load_model}")
|
2162 |
+
# Load the saved models
|
2163 |
+
model_transformer.load_state_dict(torch.load(os.path.join(args.load_model, 'transformer_model.pt')))
|
2164 |
+
representation_network.load_state_dict(torch.load(os.path.join(args.load_model, 'representation_network.pt')))
|
2165 |
+
dynamics_network.load_state_dict(torch.load(os.path.join(args.load_model, 'dynamics_network.pt')))
|
2166 |
+
|
2167 |
+
# Load prediction network and adjust its size if necessary
|
2168 |
+
saved_state_dict = torch.load(os.path.join(args.load_model, 'prediction_network.pt'))
|
2169 |
+
saved_vocab_size = saved_state_dict['policy_head.weight'].size(0)
|
2170 |
+
if saved_vocab_size != action_vocab_size:
|
2171 |
+
print(f"Adjusting prediction network size from {saved_vocab_size} to {action_vocab_size}")
|
2172 |
+
prediction_network = PredictionNetwork(state_dim, saved_vocab_size, 1).to(device)
|
2173 |
+
prediction_network.load_state_dict(saved_state_dict)
|
2174 |
+
prediction_network.policy_head = nn.Linear(prediction_network.state_dim, action_vocab_size).to(device)
|
2175 |
+
else:
|
2176 |
+
prediction_network = PredictionNetwork(state_dim, action_vocab_size, 1).to(device)
|
2177 |
+
prediction_network.load_state_dict(saved_state_dict)
|
2178 |
+
|
2179 |
+
action_encoder.load_state_dict(torch.load(os.path.join(args.load_model, 'action_encoder.pt')))
|
2180 |
+
else:
|
2181 |
+
print("Using newly initialized models")
|
2182 |
+
|
2183 |
+
# Prepare the components
|
2184 |
+
world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent, model_transformer)
|
2185 |
+
|
2186 |
+
print("Starting inference loop...")
|
2187 |
+
while True:
|
2188 |
+
if args.query:
|
2189 |
+
query = args.query
|
2190 |
+
args.query = None # Reset query for next iteration
|
2191 |
+
else:
|
2192 |
+
query = input("Please enter your query (or type 'exit' to quit): ")
|
2193 |
+
if query.lower() == 'exit':
|
2194 |
+
break
|
2195 |
+
|
2196 |
+
print(f"Processing query: {query}")
|
2197 |
+
result = infer(query, world_model_components, tree_root, tokenizer,
|
2198 |
+
max_length=args.max_length,
|
2199 |
+
inference_mode=args.inference_mode,
|
2200 |
+
beam_size=args.beam_size,
|
2201 |
+
n_tokens_predict=args.n_tokens_predict,
|
2202 |
+
mcts_iterations=args.mcts_iterations,
|
2203 |
+
exploration_constant=args.mcts_exploration_constant)
|
2204 |
+
|
2205 |
+
|
2206 |
+
if args.inference_mode == 'without_world_model':
|
2207 |
+
print("Generated Text:")
|
2208 |
+
print(result)
|
2209 |
+
else:
|
2210 |
+
print("Generated Thought Sequence:")
|
2211 |
+
for thought in result:
|
2212 |
+
print(thought)
|
2213 |
+
|
2214 |
+
print("\n") # Add a newline for better readability between queries
|
2215 |
+
|
2216 |
+
print("Inference completed.")
|
2217 |
+
|
2218 |
+
else:
|
2219 |
+
print(f"Invalid mode: {args.mode}. Please choose 'train' or 'inference'.")
|
2220 |
+
if __name__ == '__main__':
|
2221 |
+
sys.argv = [
|
2222 |
+
'lightbulb_2.py',
|
2223 |
+
'--mode', 'inference',
|
2224 |
+
'--train_mode', 'world_model', # Set 'world_model' or 'language_model' depending on the training mode
|
2225 |
+
'--dataset_name', 'wikitext', # Specify the Hugging Face dataset (e.g., 'wikitext')
|
2226 |
+
'--dataset_config', 'wikitext-2-raw-v1', # Use if you need a specific config of the dataset
|
2227 |
+
'--num_epochs', '10',
|
2228 |
+
'--batch_size', '4',
|
2229 |
+
'--accumulation_steps', '1',
|
2230 |
+
'--max_grad_norm', '1.0',
|
2231 |
+
'--weight_decay', '0.01',
|
2232 |
+
'--learning_rate', '1e-4',
|
2233 |
+
'--max_length', '512',
|
2234 |
+
'--save_dir', './trained_models',
|
2235 |
+
# Uncomment the following line to use custom data instead of a Hugging Face dataset
|
2236 |
+
#'--use_custom_data',
|
2237 |
+
'--custom_data_paths', '/content/drive/MyDrive/lightbulb/knowledge_base.json',
|
2238 |
+
'--custom_data_paths', '/content/drive/MyDrive/lightbulb/rag_cache.json',
|
2239 |
+
'--custom_data_paths', '/content/drive/MyDrive/lightbulb/llm_training_data/llm_training_data.jsonl'
|
2240 |
+
]
|
2241 |
+
|
2242 |
+
# Parse the arguments and run the main training function
|
2243 |
+
args = parse_args()
|
2244 |
+
|
2245 |
+
# Check which data source to use
|
2246 |
+
if args.use_custom_data:
|
2247 |
+
print("Training with custom data from paths:")
|
2248 |
+
for path in args.custom_data_paths:
|
2249 |
+
print(f" - {path}")
|
2250 |
+
else:
|
2251 |
+
print(f"Training with dataset '{args.dataset_name}' from Hugging Face Datasets")
|
2252 |
+
|
2253 |
+
main()
|
2254 |
+
|