RobbiePasquale commited on
Commit
f2f9590
1 Parent(s): 49c8cb6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -11
README.md CHANGED
@@ -42,7 +42,7 @@ LightBulb provides six primary functionalities, each accessible via the `main_me
42
  Trains an autonomous web search agent that navigates the web, gathers relevant content, and learns to summarize and generate responses based on user queries.
43
  ## Overview of the AutonomousWebAgent
44
 
45
- The AutonomousWebAgent is a sophisticated, multi-component search and retrieval agent designed to navigate the web, gather relevant content, and perform summarization and generation based on user queries. This agent integrates reinforcement learning (RL), Monte Carlo Tree Search (MCTS), a Retrieval Augmented Generation (RAG) Summarizer, and a Hierarchical Reinforcement Learning (HRL) architecture to select, execute, and optimize its actions based on past experiences.
46
 
47
  ### Key Components
48
 
@@ -118,10 +118,10 @@ python main_menu.py --task test_agent
118
  python main_menu.py --task test_agent --query "Your query here"
119
  ```
120
 
121
- ### 3. Train a Language Model
122
 
123
  **Description:**
124
- Trains a Language Model (LLM) and World Model using datasets from Hugging Face, enabling the model to handle complex reasoning and long sequences.
125
 
126
  ### Training Procedure
127
  - **Data Loading**: The data is tokenized and prepared with attention to padding and truncation. Text data is grouped into sequences of fixed length for efficient training.
@@ -140,7 +140,7 @@ python main_menu.py --task train_llm_world --model_name gpt2 --dataset_name wiki
140
  - `--batch_size`: Number of samples per batch.
141
  - `--max_length`: Maximum sequence length.
142
 
143
- ### 4. Inference Using Language Model with Multi-Token Prediction, Beam Search, and MCTS
144
 
145
  **Description:**
146
  Generates responses using the trained language model, leveraging multi-token prediction, beam search, and MCTS for enhanced coherence and strategic reasoning.
@@ -155,7 +155,7 @@ python main_menu.py --task inference_llm --query "Your query here"
155
  2. **Beam Search:** Maintains multiple candidate sequences to ensure diverse and high-quality outputs.
156
  3. **MCTS Integration:** Uses MCTS to evaluate and select the most promising token sequences based on policy and value estimates.
157
 
158
- ### 5. Train a Language World Model
159
 
160
  **Description:**
161
  Develops a comprehensive World Model that encapsulates state representations, dynamics, and prediction networks to simulate and predict state transitions within the Tree of Thought framework.
@@ -268,7 +268,6 @@ python main_menu.py --task inference_world_model --query "Your query here"
268
  Executes inference using the World Model integrated with ToT and multi-token beam search for highly coherent and contextually rich outputs.
269
 
270
 
271
-
272
  **Usage:**
273
  ```bash
274
  python main_menu.py --task advanced_inference --query "Your complex query here"
@@ -528,9 +527,9 @@ graph TD
528
  - `argparse`
529
  - `huggingface_hub`
530
 
531
- ## Usage Examples
532
 
533
- ### Training the Language Model and World Model
 
534
 
535
  ```bash
536
  python main_menu.py --task train_llm_world --model_name gpt2 --dataset_name wikitext --num_epochs 5 --batch_size 8 --max_length 256
@@ -542,19 +541,19 @@ python main_menu.py --task train_llm_world --model_name gpt2 --dataset_name wiki
542
  python main_menu.py --task train_agent
543
  ```
544
 
545
- ### Testing the Web Search Agent in Interactive Mode
546
 
547
  ```bash
548
  python main_menu.py --task test_agent
549
  ```
550
 
551
- ### Testing the Web Search Agent with a Single Query
552
 
553
  ```bash
554
  python main_menu.py --task test_agent --query "What are the impacts of renewable energy on global sustainability?"
555
  ```
556
 
557
- ### Advanced Inference with World Model and Tree of Thought
558
 
559
  ```bash
560
  python main_menu.py --task advanced_inference --query "Analyze the economic effects of artificial intelligence in the next decade."
 
42
  Trains an autonomous web search agent that navigates the web, gathers relevant content, and learns to summarize and generate responses based on user queries.
43
  ## Overview of the AutonomousWebAgent
44
 
45
+ The AutonomousWebAgent is a multi-component search and retrieval agent designed to navigate the web, gather relevant content, and perform summarization and generation based on user queries. This agent integrates reinforcement learning (RL), Monte Carlo Tree Search (MCTS), a Retrieval Augmented Generation (RAG) Summarizer, and a Hierarchical Reinforcement Learning (HRL) architecture to select, execute, and optimize its actions based on past experiences.
46
 
47
  ### Key Components
48
 
 
118
  python main_menu.py --task test_agent --query "Your query here"
119
  ```
120
 
121
+ ### 3. Train Language Model
122
 
123
  **Description:**
124
+ Trains a Language Model and World Model using datasets from Hugging Face, enabling the model to handle complex reasoning and long sequences.
125
 
126
  ### Training Procedure
127
  - **Data Loading**: The data is tokenized and prepared with attention to padding and truncation. Text data is grouped into sequences of fixed length for efficient training.
 
140
  - `--batch_size`: Number of samples per batch.
141
  - `--max_length`: Maximum sequence length.
142
 
143
+ ### 4. Inference Using Language Model
144
 
145
  **Description:**
146
  Generates responses using the trained language model, leveraging multi-token prediction, beam search, and MCTS for enhanced coherence and strategic reasoning.
 
155
  2. **Beam Search:** Maintains multiple candidate sequences to ensure diverse and high-quality outputs.
156
  3. **MCTS Integration:** Uses MCTS to evaluate and select the most promising token sequences based on policy and value estimates.
157
 
158
+ ### 5. Train World Model
159
 
160
  **Description:**
161
  Develops a comprehensive World Model that encapsulates state representations, dynamics, and prediction networks to simulate and predict state transitions within the Tree of Thought framework.
 
268
  Executes inference using the World Model integrated with ToT and multi-token beam search for highly coherent and contextually rich outputs.
269
 
270
 
 
271
  **Usage:**
272
  ```bash
273
  python main_menu.py --task advanced_inference --query "Your complex query here"
 
527
  - `argparse`
528
  - `huggingface_hub`
529
 
 
530
 
531
+
532
+ ### Training the World Model
533
 
534
  ```bash
535
  python main_menu.py --task train_llm_world --model_name gpt2 --dataset_name wikitext --num_epochs 5 --batch_size 8 --max_length 256
 
541
  python main_menu.py --task train_agent
542
  ```
543
 
544
+ ### Use the Web Search Agent in Interactive Mode
545
 
546
  ```bash
547
  python main_menu.py --task test_agent
548
  ```
549
 
550
+ ### Use the Web Search Agent with a Single Query
551
 
552
  ```bash
553
  python main_menu.py --task test_agent --query "What are the impacts of renewable energy on global sustainability?"
554
  ```
555
 
556
+ ### Inference with World Model and Tree of Thought
557
 
558
  ```bash
559
  python main_menu.py --task advanced_inference --query "Analyze the economic effects of artificial intelligence in the next decade."