import argparse import math import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.utils.data import DataLoader import copy from torch.optim.lr_scheduler import CosineAnnealingLR from torch.amp import autocast, GradScaler from datasets import load_dataset from transformers import AutoTokenizer # Set the device device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def parse_args(): parser = argparse.ArgumentParser(description='Train World Model with Transformer outputs.') parser.add_argument('--model_name', type=str, default='gpt2', help='Pretrained model name or path') parser.add_argument('--dataset_name', type=str, default='wikitext', help='Dataset name from HuggingFace Datasets') parser.add_argument('--dataset_config', type=str, default='wikitext-2-raw-v1', help='Dataset configuration name') parser.add_argument('--batch_size', type=int, default=2, help='Batch size') parser.add_argument('--num_epochs', type=int, default=3, help='Number of epochs') parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length') parser.add_argument('--mcts_iterations', type=int, default=5, help='Number of MCTS Iterations') parser.add_argument('--mcts_exploration_constant', type=float, default=1.414, help='Learning rate') parser.add_argument('--accumulation_steps', type=int, default=4, help='Gradient accumulation steps') parser.add_argument('--learning_rate', type=float, default=1e-4, help='Learning rate') parser.add_argument('--weight_decay', type=float, default=1e-2, help='Weight decay') parser.add_argument('--alpha', type=float, default=0.1, help='Entropy regularization weight') parser.add_argument('--beta', type=float, default=0.1, help='Variance regularization weight') parser.add_argument('--max_grad_norm', type=float, default=1.0, help='Max gradient norm for clipping') parser.add_argument('--save_dir', type=str, default='./models', help='Directory to save the models') parser.add_argument('--temperature', type=float, default=1.0, help='Temperature parameter for entropy and variance') parser.add_argument('--transformer_model_path', type=str, required=True, help='Path to the saved Transformer model') args = parser.parse_args() return args def load_data(args, tokenizer): # Load the dataset dataset = load_dataset(args.dataset_name, args.dataset_config) # Ensure the tokenizer has a padding token if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token def tokenize_function(examples): return tokenizer(examples['text'], truncation=True, max_length=args.max_length) tokenized_datasets = dataset.map( tokenize_function, batched=True, num_proc=4, remove_columns=dataset['train'].column_names, ) # Build inputs and labels for language modeling block_size = args.max_length def group_texts(examples): # Concatenate all texts concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} total_length = len(concatenated_examples['input_ids']) # We drop the small remainder total_length = (total_length // block_size) * block_size # Split by chunks of block_size result = { k: [t[i : i + block_size] for i in range(0, total_length, block_size)] for k, t in concatenated_examples.items() } result['labels'] = result['input_ids'].copy() return result lm_datasets = tokenized_datasets.map( group_texts, batched=True, num_proc=4, ) # Create DataLoader train_dataset = lm_datasets['train'] eval_dataset = lm_datasets['validation'] if 'validation' in lm_datasets else lm_datasets['test'] data_collator = lambda data: { 'input_ids': torch.tensor([f['input_ids'] for f in data], dtype=torch.long), 'labels': torch.tensor([f['labels'] for f in data], dtype=torch.long) } train_loader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=data_collator) eval_loader = DataLoader(eval_dataset, shuffle=False, batch_size=args.batch_size, collate_fn=data_collator) return train_loader, eval_loader def save_all_models(transformer_model, representation_network, dynamics_network, prediction_network, action_encoder, save_dir, epoch): """ Save all models to the specified directory. Args: transformer_model (nn.Module): Transformer model. representation_network (nn.Module): Representation network. dynamics_network (nn.Module): Dynamics network. prediction_network (nn.Module): Prediction network. action_encoder (nn.Module): Action encoder. save_dir (str): Directory to save the models. epoch (int): Current epoch number. """ os.makedirs(save_dir, exist_ok=True) torch.save(transformer_model.state_dict(), os.path.join(save_dir, f'transformer_model_epoch_{epoch}.pt')) torch.save(representation_network.state_dict(), os.path.join(save_dir, f'representation_network_epoch_{epoch}.pt')) torch.save(dynamics_network.state_dict(), os.path.join(save_dir, f'dynamics_network_epoch_{epoch}.pt')) torch.save(prediction_network.state_dict(), os.path.join(save_dir, f'prediction_network_epoch_{epoch}.pt')) torch.save(action_encoder.state_dict(), os.path.join(save_dir, f'action_encoder_epoch_{epoch}.pt')) print(f"All models saved for epoch {epoch}.") class RotaryPositionalEncoding(nn.Module): def __init__(self, d_model): super(RotaryPositionalEncoding, self).__init__() inv_freq = 1.0 / (10000 ** (torch.arange(0, d_model, 2).float() / d_model)) self.register_buffer('inv_freq', inv_freq) def forward(self, x): seq_len, batch_size, _ = x.size() t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq) sinusoid_inp = torch.einsum("i,j->ij", t, self.inv_freq) sin = sinusoid_inp.sin().unsqueeze(1) # (seq_len, 1, d_model/2) cos = sinusoid_inp.cos().unsqueeze(1) # (seq_len, 1, d_model/2) x1 = x[..., 0::2] x2 = x[..., 1::2] # Apply rotation x_rotated = torch.zeros_like(x) x_rotated[..., 0::2] = x1 * cos - x2 * sin x_rotated[..., 1::2] = x1 * sin + x2 * cos return x_rotated class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" self.d_k = d_model // num_heads self.num_heads = num_heads self.linear_q = nn.Linear(d_model, d_model) self.linear_k = nn.Linear(d_model, d_model) self.linear_v = nn.Linear(d_model, d_model) self.linear_out = nn.Linear(d_model, d_model) def forward(self, query, key, value, mask=None): batch_size = query.size(0) query = self.linear_q(query).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) key = self.linear_k(key).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) value = self.linear_v(value).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e4) attn = F.softmax(scores, dim=-1) output = torch.matmul(attn, value) output = output.transpose(1, 2).contiguous().view(batch_size, -1, self.num_heads * self.d_k) return self.linear_out(output) class MoE(nn.Module): def __init__(self, d_model, num_experts, d_ff, top_k=2, dropout=0.1): super(MoE, self).__init__() self.num_experts = num_experts self.top_k = top_k self.experts = nn.ModuleList([ nn.Sequential( nn.Linear(d_model, d_ff), nn.GELU() if i % 2 == 0 else nn.SiLU(), nn.Linear(d_ff, d_model) ) for i in range(num_experts) ]) self.gate = nn.Linear(d_model, num_experts) self.dropout = nn.Dropout(dropout) def forward(self, x): batch_size, seq_len, d_model = x.size() # Compute gating scores gate_scores = self.gate(x) # (batch_size, seq_len, num_experts) top_k_scores, top_k_indices = torch.topk(gate_scores, self.top_k, dim=-1) # (batch_size, seq_len, top_k) top_k_scores = F.softmax(top_k_scores, dim=-1) # (batch_size, seq_len, top_k) # Initialize output output = torch.zeros_like(x) # Flatten batch and sequence dimensions x_flat = x.view(-1, d_model) # (batch_size * seq_len, d_model) output_flat = output.view(-1, d_model) top_k_indices_flat = top_k_indices.view(-1, self.top_k) # (batch_size * seq_len, top_k) top_k_scores_flat = top_k_scores.view(-1, self.top_k) # (batch_size * seq_len, top_k) for k in range(self.top_k): expert_idx_flat = top_k_indices_flat[:, k] # (batch_size * seq_len) expert_scores_flat = top_k_scores_flat[:, k] # (batch_size * seq_len) for e in range(self.num_experts): mask = (expert_idx_flat == e) # Boolean mask if mask.any(): x_masked = x_flat[mask] # Select tokens for expert e expert_output = self.experts[e](x_masked) # Apply expert e output_flat[mask] += expert_scores_flat[mask].unsqueeze(-1) * expert_output output = output_flat.view(batch_size, seq_len, d_model) return self.dropout(output) class TransformerBlock(nn.Module): def __init__(self, d_model, num_heads, d_ff, num_experts, dropout=0.1, top_k=2): super(TransformerBlock, self).__init__() self.self_attention = MultiHeadAttention(d_model, num_heads) self.norm1 = nn.LayerNorm(d_model) self.cross_attention = MultiHeadAttention(d_model, num_heads) self.norm2 = nn.LayerNorm(d_model) self.moe = MoE(d_model, num_experts, d_ff, top_k, dropout) self.norm3 = nn.LayerNorm(d_model) def forward(self, x, mask=None, enc_output=None, enc_mask=None): # Self-attention attn_output = self.self_attention(x, x, x, mask) x = self.norm1(x + attn_output) # Cross-attention (only in decoder) if enc_output is not None: cross_attn_output = self.cross_attention(x, enc_output, enc_output, enc_mask) x = self.norm2(x + cross_attn_output) # Feedforward/MoE moe_output = self.moe(x) return self.norm3(x + moe_output) class Transformer(nn.Module): def __init__(self, input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout=0.1, top_k=2): super(Transformer, self).__init__() self.embedding = nn.Embedding(input_dim, d_model, padding_idx=input_dim - 1) self.rotary_positional_encoding = RotaryPositionalEncoding(d_model) self.encoder_layers = nn.ModuleList( [TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)] ) self.decoder_layers = nn.ModuleList( [TransformerBlock(d_model, num_heads, d_ff, num_experts, dropout, top_k) for _ in range(num_layers)] ) self.output_layer = nn.Linear(d_model, output_dim) self.d_model = d_model def forward(self, src, tgt, src_mask=None, tgt_mask=None): # Encoder src = self.embedding(src) * math.sqrt(self.d_model) src = src.transpose(0, 1) # (batch_size, seq_len, d_model) -> (seq_len, batch_size, d_model) src = self.rotary_positional_encoding(src) src = src.transpose(0, 1) # (seq_len, batch_size, d_model) -> (batch_size, seq_len, d_model) for layer in self.encoder_layers: src = layer(src, src_mask) # Decoder tgt = self.embedding(tgt) * math.sqrt(self.d_model) tgt = tgt.transpose(0, 1) tgt = self.rotary_positional_encoding(tgt) tgt = tgt.transpose(0, 1) for layer in self.decoder_layers: tgt = layer(tgt, tgt_mask, src, src_mask) output = self.output_layer(tgt) return output def generate(self, src, tokenizer, max_length=20, temperature=1.0): """ Generate sequences using differentiable sampling (Gumbel-Softmax). Args: src (torch.Tensor): Source input tensor of shape (batch_size, seq_len) tokenizer (transformers.PreTrainedTokenizer): Tokenizer to access special tokens max_length (int): Maximum length of the generated sequence temperature (float): Temperature parameter for Gumbel-Softmax Returns: torch.Tensor: Generated sequences of shape (batch_size, max_length) torch.Tensor: Entropy values for each time step torch.Tensor: Variance values for each time step """ batch_size = src.size(0) # Encode the source src_enc = self.embedding(src) * math.sqrt(self.d_model) src_enc = src_enc.transpose(0, 1) src_enc = self.rotary_positional_encoding(src_enc) src_enc = src_enc.transpose(0, 1) for layer in self.encoder_layers: src_enc = layer(src_enc) # Initialize decoder input with tokens tgt_seq = torch.full((batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=src.device) entropies = [] variances = [] for _ in range(max_length): tgt_emb = self.embedding(tgt_seq) * math.sqrt(self.d_model) tgt_emb = tgt_emb.transpose(0, 1) tgt_emb = self.rotary_positional_encoding(tgt_emb) tgt_emb = tgt_emb.transpose(0, 1) tgt_dec = tgt_emb for layer in self.decoder_layers: tgt_dec = layer(tgt_dec, None, src_enc, None) output = self.output_layer(tgt_dec) # (batch_size, seq_len, vocab_size) logits = output[:, -1, :] # Get logits for the last time step # Compute token probabilities probs = F.softmax(logits / temperature, dim=-1) # (batch_size, vocab_size) # Compute entropy entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size) entropies.append(entropy) # Sample token using Gumbel-Softmax gumbel_noise = -torch.log(-torch.log(torch.rand_like(probs) + 1e-9) + 1e-9) y = (logits + gumbel_noise) / temperature y = F.softmax(y, dim=-1) # (batch_size, vocab_size) # Compute variance variance = torch.var(y, dim=-1) # (batch_size) variances.append(variance) # Get token indices (argmax for hard selection) next_tokens = torch.argmax(y, dim=-1, keepdim=True) # (batch_size, 1) tgt_seq = torch.cat([tgt_seq, next_tokens], dim=1) # Stack entropies and variances entropies = torch.stack(entropies, dim=1) # (batch_size, max_length) variances = torch.stack(variances, dim=1) # (batch_size, max_length) return tgt_seq[:, 1:], entropies, variances # Exclude the initial token # Objective Functions class InfoNCE_Loss(nn.Module): def __init__(self, temperature=0.07): super(InfoNCE_Loss, self).__init__() self.temperature = temperature self.cross_entropy = nn.CrossEntropyLoss() def forward(self, z_i, z_j): """ Args: z_i (torch.Tensor): Flattened representations from view i, shape (2n, embed_dim) z_j (torch.Tensor): Flattened representations from view j, shape (2n, embed_dim) Returns: torch.Tensor: InfoNCE loss """ n = z_i.size(0) z = torch.cat([z_i, z_j], dim=0) # Shape: (2n, embed_dim) z = F.normalize(z, dim=1) similarity_matrix = torch.matmul(z, z.T) # Shape: (2n, 2n) # Create a mask to exclude self-similarity mask = torch.eye(2 * n, device=z.device, dtype=torch.bool) similarity_matrix = similarity_matrix.masked_fill(mask, -1e4) # Use a manageable negative value # Create labels for contrastive learning labels = torch.arange(n, device=z.device) labels = torch.cat([labels + n, labels], dim=0) # Shape: (2n,) # Apply temperature scaling similarity_matrix /= self.temperature # Compute cross-entropy loss loss = self.cross_entropy(similarity_matrix, labels) return loss class CovarianceRegularization(nn.Module): def __init__(self, lambda_reg=1e-3): super(CovarianceRegularization, self).__init__() self.lambda_reg = lambda_reg def forward(self, embeddings): """ Args: embeddings (torch.Tensor): Embedding tensor, shape (batch_size, embed_dim) Returns: torch.Tensor: Covariance regularization loss """ batch_size, embed_dim = embeddings.size() mean = embeddings.mean(dim=0) embeddings_centered = embeddings - mean cov = (embeddings_centered.T @ embeddings_centered) / (batch_size - 1) cov_loss = torch.sum(cov ** 2) - torch.sum(torch.diag(cov) ** 2) return self.lambda_reg * cov_loss class DynamicsPerformanceLoss(nn.Module): def __init__(self, lambda_var=1e-3): super(DynamicsPerformanceLoss, self).__init__() self.lambda_var = lambda_var def forward(self, true_next_state, predicted_next_state): """ Args: true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim) predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim) Returns: torch.Tensor: Dynamics performance loss """ mse_loss = F.mse_loss(predicted_next_state, true_next_state) variance_loss = torch.var(predicted_next_state, dim=0).mean() return mse_loss + self.lambda_var * variance_loss class ThoughtConsistencyLoss(nn.Module): def __init__(self): super(ThoughtConsistencyLoss, self).__init__() def forward(self, true_next_state, perturbed_next_state): """ Args: true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim) perturbed_next_state (torch.Tensor): Perturbed next state, shape (batch_size, state_dim) Returns: torch.Tensor: Thought-consistency loss """ return F.mse_loss(true_next_state, perturbed_next_state) class PolicyValueJointLoss(nn.Module): def __init__(self, lambda_value=0.5): super(PolicyValueJointLoss, self).__init__() self.lambda_value = lambda_value self.cross_entropy = nn.CrossEntropyLoss() self.mse_loss = nn.MSELoss() def forward(self, policy_logits, true_policy, value_pred, true_value): """ Args: policy_logits (torch.Tensor): Logits from the policy network, shape (batch_size * seq_len, num_actions) true_policy (torch.Tensor): Ground truth policy, shape (batch_size * seq_len, num_actions) value_pred (torch.Tensor): Predicted values, shape (batch_size * seq_len) true_value (torch.Tensor): Ground truth values, shape (batch_size * seq_len) Returns: torch.Tensor: Combined policy and value loss """ policy_logits = policy_logits.view(-1, policy_logits.size(-1)) true_policy = true_policy.view(-1, true_policy.size(-1)) value_pred = value_pred.view(-1) true_value = true_value.view(-1) policy_loss = self.cross_entropy(policy_logits, true_policy.argmax(dim=1)) value_loss = self.mse_loss(value_pred, true_value) return policy_loss + self.lambda_value * value_loss class ActionDiversityReward(nn.Module): def __init__(self, lambda_div=1e-3): super(ActionDiversityReward, self).__init__() self.lambda_div = lambda_div def forward(self, action_embeddings): """ Args: action_embeddings (torch.Tensor): Embeddings of actions, shape (batch_size, embed_dim) Returns: torch.Tensor: Action diversity loss """ similarity_matrix = F.cosine_similarity(action_embeddings.unsqueeze(1), action_embeddings.unsqueeze(0), dim=2) # Zero out self-similarity similarity_matrix = similarity_matrix - torch.eye(similarity_matrix.size(0)).to(action_embeddings.device) diversity_loss = torch.sum(similarity_matrix ** 2) return self.lambda_div * diversity_loss class ExpectedThoughtValueLoss(nn.Module): def __init__(self): super(ExpectedThoughtValueLoss, self).__init__() def forward(self, mcts_best_values): """ Args: mcts_best_values (torch.Tensor): Best values from MCTS, shape (batch_size) Returns: torch.Tensor: ETV loss """ return -mcts_best_values.mean() class ExplorationRegularization(nn.Module): def __init__(self, lambda_expl=1e-3): super(ExplorationRegularization, self).__init__() self.lambda_expl = lambda_expl def forward(self, visit_counts): """ Args: visit_counts (torch.Tensor): Visit counts for actions, shape (batch_size, num_actions) Returns: torch.Tensor: Exploration regularization loss """ reward = torch.sum(1.0 / (visit_counts + 1), dim=-1) return self.lambda_expl * reward.mean() class KL_DivergenceLoss(nn.Module): def __init__(self): super(KL_DivergenceLoss, self).__init__() def forward(self, old_policy, new_policy): """ Args: old_policy (torch.Tensor): Old policy probabilities, shape (batch_size, num_actions) new_policy (torch.Tensor): New policy probabilities, shape (batch_size, num_actions) Returns: torch.Tensor: KL divergence loss """ kl_div = F.kl_div(new_policy.log(), old_policy, reduction='batchmean') return kl_div # MuZero class ActionEncoder(nn.Module): def __init__(self, vocab_size, embed_dim): super(ActionEncoder, self).__init__() self.embedding = nn.Embedding(vocab_size, embed_dim) def forward(self, action_sequences): """ Args: action_sequences (torch.Tensor): Tensor of shape (batch_size, seq_len) Returns: torch.Tensor: Encoded actions of shape (batch_size, seq_len, embed_dim) """ return self.embedding(action_sequences) #.half() # Convert to half-precision class RepresentationNetwork(nn.Module): def __init__(self, vocab_dim, d_model, state_dim): super(RepresentationNetwork, self).__init__() self.proj = nn.Linear(vocab_dim, d_model) # Project from vocab_dim to d_model self.linear = nn.Linear(d_model, state_dim) # Project from d_model to state_dim self.norm = nn.LayerNorm(state_dim) def forward(self, transformer_output): """ Args: transformer_output (torch.Tensor): Shape (batch_size, seq_len, vocab_dim) Returns: torch.Tensor: Encoded state of shape (batch_size, seq_len, state_dim) """ # First project down from vocab_dim to d_model projected_output = self.proj(transformer_output) # Then project down from d_model to state_dim state = self.linear(projected_output) state = self.norm(state) return state class DynamicsNetwork(nn.Module): def __init__(self, state_dim, action_dim, hidden_dim): super(DynamicsNetwork, self).__init__() self.rms_norm = nn.LayerNorm(state_dim) self.fc1 = nn.Linear(state_dim + action_dim, hidden_dim) self.activation = nn.GELU() self.fc2 = nn.Linear(hidden_dim, state_dim) def forward(self, state, action): """ Args: state (torch.Tensor): Current state, shape (batch_size, seq_len, state_dim) action (torch.Tensor): Action embedding, shape (batch_size, seq_len, action_dim) Returns: torch.Tensor: Predicted next state, shape (batch_size, seq_len, state_dim) """ norm_state = self.rms_norm(state) combined = torch.cat([norm_state, action], dim=-1) hidden = self.activation(self.fc1(combined)) next_state = self.fc2(hidden) return next_state class PredictionNetwork(nn.Module): def __init__(self, state_dim, policy_dim, value_dim): super(PredictionNetwork, self).__init__() self.state_dim = state_dim self.rms_norm = nn.LayerNorm(state_dim) self.policy_head = nn.Linear(state_dim, policy_dim) self.value_head = nn.Linear(state_dim, value_dim) def forward(self, state): """ Args: state (torch.Tensor): Predicted state, shape (batch_size, seq_len, state_dim) Returns: Tuple[torch.Tensor, torch.Tensor]: Policy logits and value estimates """ norm_state = self.rms_norm(state) policy_logits = self.policy_head(norm_state) value_estimates = self.value_head(norm_state) return policy_logits, value_estimates class MCTSNode: def __init__(self, state, parent=None, action=None): """ Initialize an MCTS node. Args: state (State): The current state representation. parent (MCTSNode, optional): The parent node. Defaults to None. action (int, optional): The action taken to reach this node. Defaults to None. """ self.state = state # Instance of State class self.parent = parent # Parent MCTSNode self.action = action # Action taken to reach this node self.children = {} # Dict mapping actions to MCTSNode self.visit_count = 0 self.value_sum = 0.0 self.prior = 0.0 # Prior probability from policy network def expand(self, actions, priors): """ Expand the node with possible actions and their priors. Args: actions (list): List of possible actions (action indices). priors (list): List of prior probabilities corresponding to actions. """ for action, prior in zip(actions, priors): if action not in self.children: child_state = self.state.apply_action(action) # Apply action to get new state child_node = MCTSNode(state=child_state, parent=self, action=action) child_node.prior = float(prior) # Ensure that prior is a float value self.children[action] = child_node def is_leaf(self): """ Check if the node is a leaf node (i.e., has no children). Returns: bool: True if leaf, False otherwise. """ return len(self.children) == 0 def ucb_score(self, total_visits, exploration_constant=math.sqrt(2)): """ Calculate the UCB (Upper Confidence Bound) score for the node. Args: total_visits (int): Total number of visits to the parent node. exploration_constant (float, optional): Exploration parameter. Defaults to math.sqrt(2). Returns: float: The UCB score. """ if self.visit_count == 0: return float('inf') average_value = self.value_sum / self.visit_count exploration_term = exploration_constant * self.prior * math.sqrt(total_visits) / (1 + self.visit_count) return average_value + exploration_term class MCTS: def __init__(self, prediction_network, dynamics_network, action_encoder, num_iterations=10, exploration_constant=math.sqrt(2)): """ Initialize the MCTS. Args: prediction_network (nn.Module): The Prediction Network. dynamics_network (nn.Module): The Dynamics Network. num_iterations (int): Number of MCTS iterations per search. exploration_constant (float): Exploration parameter for UCB. """ self.action_encoder = action_encoder self.prediction_network = prediction_network self.dynamics_network = dynamics_network self.num_iterations = num_iterations self.exploration_constant = exploration_constant def search(self, root_state): """ Perform MCTS starting from the root_state. Args: root_state: The initial state from which to start MCTS. Returns: The best action determined by MCTS. """ self.root = MCTSNode(state=root_state) for _ in range(self.num_iterations): node = self.select(self.root) value = self.evaluate(node) self.backpropagate(node, value) return self.best_action() def select(self, node): """ Traverse the tree to select a node for evaluation. Args: node: The starting node for selection. Returns: The node selected for evaluation. """ while not node.is_leaf(): best_action, best_node = max(node.children.items(), key=lambda item: item[1].ucb_score(node.visit_count, self.exploration_constant)) node = best_node return node def evaluate(self, node): """ Evaluate the node by expanding it and predicting its value. Args: node: The node to evaluate. Returns: The value estimate of the node. """ # Use the prediction network to get policy logits and value estimate policy_logits, value_estimate = self.prediction_network(node.state.representation) # Convert logits to probabilities policy = F.softmax(policy_logits, dim=-1).detach().cpu().numpy() # Expand the node with possible actions and their priors actions = list(range(policy.shape[-1])) # Assuming actions are indexed from 0 to num_actions-1 priors = policy[0].flatten().tolist() # Convert to a 1D list of floats node.expand(actions, priors) return value_estimate.mean().item() def backpropagate(self, node, value): """ Backpropagate the value up the tree. Args: node: The node to start backpropagation from. value (float): The value to backpropagate. """ while node is not None: node.visit_count += 1 node.value_sum += value node = node.parent def best_action(self): """ Choose the action with the highest visit count. Returns: The best action. """ best_child = max(self.root.children.values(), key=lambda n: n.visit_count) return best_child.action class State: def __init__(self, representation, dynamics_network, action_encoder): """ Initialize the State. Args: representation (torch.Tensor): Encoded state representation, shape (batch_size, seq_len, state_dim) dynamics_network (nn.Module): The Dynamics Network to predict next states action_encoder (nn.Module): The Action Encoder to encode actions """ self.representation = representation # Shape: (batch_size, seq_len, state_dim) self.dynamics_network = dynamics_network # Reference to Dynamics Network self.action_encoder = action_encoder def apply_action(self, action): """ Apply an action to the current state to get a new state. Args: action (int): The action to apply (e.g., token index) Returns: State: The new state after applying the action """ # Create action sequence filled with action index batch_size, seq_len, _ = self.representation.size() action_sequence = torch.full((batch_size, seq_len), action, dtype=torch.long, device=self.representation.device) # Encode action action_embedding = self.action_encoder(action_sequence) # Predict the next state using the Dynamics Network with torch.no_grad(): next_state_representation = self.dynamics_network(self.representation, action_embedding) return State(next_state_representation, self.dynamics_network, self.action_encoder) class PPOAgent: def __init__(self, policy_network, optimizer, clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5): self.policy_network = policy_network self.optimizer = optimizer self.clip_epsilon = clip_epsilon self.entropy_coef = entropy_coef self.value_coef = value_coef def compute_loss(self, states, old_log_probs, actions, returns, advantages): # Get policy logits and value estimates policy_logits, value_estimates = self.policy_network(states) batch_size, seq_len, num_actions = policy_logits.size() # Flatten tensors policy_logits = policy_logits.view(-1, num_actions) # Shape: (batch_size * seq_len, num_actions) value_estimates = value_estimates.view(-1) # Shape: (batch_size * seq_len) actions = actions.view(-1) # Shape: (batch_size * seq_len) old_log_probs = old_log_probs.view(-1) # Shape: (batch_size * seq_len) returns = returns.view(-1) # Shape: (batch_size * seq_len) advantages = advantages.view(-1) # Shape: (batch_size * seq_len) # Compute new log probabilities new_log_probs_all = F.log_softmax(policy_logits, dim=-1) # Shape: (batch_size * seq_len, num_actions) new_log_probs = new_log_probs_all.gather(1, actions.unsqueeze(-1)).squeeze(-1) # Shape: (batch_size * seq_len) # Compute ratios ratios = torch.exp(new_log_probs - old_log_probs) # PPO surrogate loss surr1 = ratios * advantages surr2 = torch.clamp(ratios, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * advantages policy_loss = -torch.min(surr1, surr2).mean() # Value loss value_loss = F.mse_loss(value_estimates, returns) # Entropy loss entropy = -(new_log_probs * torch.exp(new_log_probs)).mean() # Total loss total_loss = policy_loss + self.value_coef * value_loss - self.entropy_coef * entropy return total_loss def compute_loss_world_model(predicted_next_state, true_next_state, policy_logits, true_policy, value_estimates, true_value, alpha, beta, temperature, lambda_reg, lambda_var, lambda_div, lambda_expl): """ Compute the combined loss for the World Model. Args: predicted_next_state (torch.Tensor): Predicted next state, shape (batch_size, state_dim) true_next_state (torch.Tensor): Ground truth next state, shape (batch_size, state_dim) policy_logits (torch.Tensor): Policy logits, shape (batch_size, num_actions) true_policy (torch.Tensor): Ground truth policy, shape (batch_size, num_actions) value_estimates (torch.Tensor): Value estimates, shape (batch_size) true_value (torch.Tensor): Ground truth value, shape (batch_size) alpha (float): Entropy regularization weight beta (float): Variance regularization weight temperature (float): Temperature parameter lambda_reg (float): Covariance regularization weight lambda_var (float): Dynamics variance loss weight lambda_div (float): Action diversity reward weight lambda_expl (float): Exploration regularization weight Returns: torch.Tensor: Combined loss """ # Cross-entropy loss ce_loss = F.cross_entropy(policy_logits, true_policy.argmax(dim=1)) # Entropy loss probs = F.softmax(policy_logits / temperature, dim=-1) # (batch_size, num_actions) entropy = -torch.sum(probs * torch.log(probs + 1e-9), dim=-1) # (batch_size) entropy_loss = -alpha * torch.mean(entropy) # Variance loss variance = torch.var(probs, dim=-1) # (batch_size) variance_loss = -beta * torch.mean(variance) # Covariance Regularization cov_reg = CovarianceRegularization(lambda_reg)(predicted_next_state) # Dynamics Performance Loss dynamics_loss = DynamicsPerformanceLoss(lambda_var)(true_next_state, predicted_next_state) # Thought-Consistency Loss perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01 thought_loss = ThoughtConsistencyLoss()(true_next_state, perturbed_next_state) # Policy-Value Joint Loss pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates, true_value) # Action Diversity Reward action_embeddings = predicted_next_state # Assuming actions are derived from state action_diversity = ActionDiversityReward(lambda_div)(action_embeddings) # Expected Thought Value (ETV) Loss # Placeholder: Replace with actual MCTS best values mcts_best_values = torch.zeros(value_estimates.size(0)).to(device) etv = ExpectedThoughtValueLoss()(mcts_best_values) # Exploration Regularization # Placeholder: Replace with actual visit counts visit_counts = torch.ones(predicted_next_state.size(0), input_dim).to(device) exploration = ExplorationRegularization(lambda_expl)(visit_counts) # KL Divergence Regularization # Placeholder: Replace with actual old and new policies old_policy = F.softmax(policy_logits.detach(), dim=-1) new_policy = F.softmax(policy_logits, dim=-1) kl_loss = KL_DivergenceLoss()(old_policy, new_policy) # Total Loss total_loss = ( ce_loss + entropy_loss + variance_loss + cov_reg + dynamics_loss + thought_loss + pv_loss + action_diversity + etv + exploration + kl_loss ) return total_loss def train_epoch_world_model(world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, embed_dim, input_dim): representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components representation_network.train() dynamics_network.train() prediction_network.train() action_encoder.train() ppo_agent.policy_network.train() mcts = MCTS(prediction_network, dynamics_network, action_encoder, num_iterations=args.mcts_iterations, exploration_constant=args.mcts_exploration_constant) total_loss = 0.0 optimizer.zero_grad() print(f"Starting World Model training epoch with {len(train_loader)} batches...") for i, batch in enumerate(train_loader): print(f"Processing batch {i+1}/{len(train_loader)}...") # Ensure batches are on the appropriate device for the Transformer src_batch = batch['input_ids'].to('cpu') # Move to CPU for Transformer model tgt_batch = batch['labels'].to('cpu') # Move to CPU for Transformer model with autocast(device_type='cuda'): print("Forward pass through Transformer (frozen)...") with torch.no_grad(): transformer_output = model_transformer(src_batch, tgt_batch[:, :-1]) # Move transformer output to the GPU for further processing transformer_output = transformer_output.to(device) # Encode actions directly on the GPU encoded_actions = action_encoder(tgt_batch[:, :-1].to(device)) # Move labels to GPU for encoding # World Model - Representation state_representation = representation_network(transformer_output) # On GPU batch_size, seq_len, _ = state_representation.size() # Initialize list to collect predicted next states for the batch predicted_next_states = [] # Iterate over each sample in the batch for MCTS for b in range(batch_size): # Create a State instance for the current sample current_state = State(state_representation[b].unsqueeze(0), dynamics_network, action_encoder) # Perform MCTS to find the best action best_action = mcts.search(current_state) # Create action sequence filled with best_action action_sequence = torch.full((1, seq_len), best_action, dtype=torch.long, device=device) # Get action embedding action_embedding = action_encoder(action_sequence) # Apply dynamics network predicted_next_state = dynamics_network(current_state.representation, action_embedding) predicted_next_states.append(predicted_next_state) # Concatenate predicted next states to form a batch predicted_next_state_batch = torch.cat(predicted_next_states, dim=0) # Prediction Network - Policy logits and value policy_logits, value_estimates = prediction_network(predicted_next_state_batch) # Define true_policy and true_value as placeholders on the GPU true_policy = torch.zeros_like(policy_logits).to(device) true_value = torch.zeros_like(value_estimates).to(device) # Compute PPO loss actions = torch.argmax(policy_logits, dim=-1) old_log_probs = torch.zeros_like(actions, dtype=torch.float32).to(device) returns = torch.zeros_like(actions, dtype=torch.float32).to(device) advantages = torch.zeros_like(actions, dtype=torch.float32).to(device) # Compute PPO loss using states ppo_loss = ppo_agent.compute_loss(state_representation, old_log_probs, actions, returns, advantages) # Compute InfoNCE Loss z_i = state_representation.view(batch_size * seq_len, state_dim) # Shape: (batch_size * seq_len, state_dim) z_j = F.dropout(z_i, p=0.1, training=True) info_nce = InfoNCE_Loss()(z_i, z_j) # Compute other losses covariance = CovarianceRegularization()(predicted_next_state_batch.view(-1, predicted_next_state_batch.size(-1))) dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state_batch).to(device), predicted_next_state_batch) perturbed_next_state = predicted_next_state_batch + torch.randn_like(predicted_next_state_batch) * 0.01 thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state_batch).to(device), perturbed_next_state) pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1)) action_diversity = ActionDiversityReward()(encoded_actions.view(-1, embed_dim)) mcts_best_values = torch.zeros(actions.size(0)).to(device) etv = ExpectedThoughtValueLoss()(mcts_best_values) visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device) exploration = ExplorationRegularization()(visit_counts) old_policy = F.softmax(policy_logits.detach(), dim=-1) new_policy = F.softmax(policy_logits, dim=-1) kl_loss = KL_DivergenceLoss()(old_policy, new_policy) # Total Loss loss = ( ppo_loss + info_nce + covariance + dynamics_loss + thought_loss + pv_loss + action_diversity + etv + exploration + kl_loss ) loss = loss / args.accumulation_steps print("Backward pass...") scaler.scale(loss).backward() if (i + 1) % args.accumulation_steps == 0: print("Gradient clipping...") scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_( [param for group in optimizer.param_groups for param in group['params']], args.max_grad_norm ) print("Optimizer step...") scaler.step(optimizer) scaler.update() print("Zeroing gradients...") optimizer.zero_grad() print("Updating learning rate...") scheduler.step() total_loss += loss.item() * args.accumulation_steps print(f"Batch {i+1} completed. Current loss: {loss.item():.4f}") avg_loss = total_loss / len(train_loader) print(f"World Model training epoch completed. Average loss: {avg_loss:.4f}") return avg_loss def evaluate_world_model(world_model_components, model_transformer, eval_loader, args): representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent = world_model_components representation_network.eval() dynamics_network.eval() prediction_network.eval() action_encoder.eval() ppo_agent.policy_network.eval() total_loss = 0.0 with torch.no_grad(): for batch in eval_loader: src_batch = batch['input_ids'].to(device) tgt_batch = batch['labels'].to(device) # Forward pass through Transformer (on CPU) transformer_output = model_transformer(src_batch, tgt_batch[:, :-1]) # Encode actions encoded_actions = action_encoder(tgt_batch[:, :-1].to(device)) # Move to GPU if necessary # World Model - Representation state = representation_network(transformer_output.to(device)) # Dynamics Network - Predict next state predicted_next_state = dynamics_network(state, encoded_actions) # Prediction Network - Policy logits and value policy_logits, value_estimates = prediction_network(predicted_next_state) # Placeholder: Define true_policy and true_value # Replace these with actual targets from your environment or dataset true_policy = torch.zeros_like(policy_logits).to(device) true_value = torch.zeros_like(value_estimates).to(device) # Compute PPO loss # Placeholder: Replace with actual old_log_probs, actions, returns, and advantages old_log_probs = torch.zeros_like(policy_logits).to(device) actions = torch.argmax(policy_logits, dim=-1) returns = torch.zeros(actions.size(0)).to(device) advantages = torch.zeros(actions.size(0)).to(device) ppo_loss = ppo_agent.compute_loss(old_log_probs, actions, returns, advantages) # Compute other losses info_nce = InfoNCE_Loss()(state, state) # Placeholder: replace with actual positive pairs covariance = CovarianceRegularization()(predicted_next_state.view(-1, predicted_next_state.size(-1))) dynamics_loss = DynamicsPerformanceLoss()(torch.zeros_like(predicted_next_state).to(device), predicted_next_state) perturbed_next_state = predicted_next_state + torch.randn_like(predicted_next_state) * 0.01 thought_loss = ThoughtConsistencyLoss()(torch.zeros_like(predicted_next_state).to(device), perturbed_next_state) pv_loss = PolicyValueJointLoss()(policy_logits, true_policy, value_estimates.squeeze(-1), true_value.squeeze(-1)) action_diversity = ActionDiversityReward()(encoded_actions.view(-1, encoded_actions.size(-1))) mcts_best_values = torch.zeros(actions.size(0)).to(device) # Placeholder: replace with actual MCTS values etv = ExpectedThoughtValueLoss()(mcts_best_values) visit_counts = torch.ones(actions.size(0), policy_logits.size(-1)).to(device) # Placeholder: replace with actual visit counts exploration = ExplorationRegularization()(visit_counts) old_policy = F.softmax(policy_logits.detach(), dim=-1) new_policy = F.softmax(policy_logits, dim=-1) kl_loss = KL_DivergenceLoss()(old_policy, new_policy) # Total Loss loss = ( ppo_loss + info_nce + covariance + dynamics_loss + thought_loss + pv_loss + action_diversity + etv + exploration + kl_loss ) total_loss += loss.item() avg_loss = total_loss / len(eval_loader) print(f"World Model evaluation completed. Average loss: {avg_loss:.4f}") return avg_loss def main(): args = parse_args() print("Arguments parsed successfully.") # Create save directory if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) print(f"Save directory created: {args.save_dir}") # Load tokenizer print("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(args.model_name) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token print("Tokenizer loaded successfully.") # Define padding_idx and input dimension based on tokenizer padding_idx = tokenizer.pad_token_id input_dim = len(tokenizer) # Load data print("Loading and preprocessing data...") train_loader, eval_loader = load_data(args, tokenizer) print("Data loaded and preprocessed successfully.") # Define model parameters d_model = 512 # half to save space num_heads = 8 num_layers = 6 d_ff = 2048 num_experts = 4 output_dim = input_dim dropout = 0.1 top_k = 2 state_dim = 128 action_dim = d_model hidden_dim = 512 vocab_dim = len(tokenizer) # Initialize and load the Transformer model (on CPU) print("Initializing and loading Transformer model...") model_transformer = Transformer(input_dim, d_model, num_heads, num_layers, d_ff, num_experts, output_dim, dropout, top_k) model_transformer.load_state_dict(torch.load(args.transformer_model_path, map_location='cpu')) model_transformer.eval() model_transformer.to('cpu') print("Transformer model loaded and moved to CPU.") # Define World Model components representation_network = RepresentationNetwork(vocab_dim, d_model, state_dim).to(device) dynamics_network = DynamicsNetwork(state_dim, action_dim, hidden_dim).to(device) prediction_network = PredictionNetwork(state_dim, input_dim, 1).to(device) action_encoder = ActionEncoder(input_dim, action_dim).to(device) # Define Optimizers and Schedulers optimizer = optim.AdamW( list(representation_network.parameters()) + list(dynamics_network.parameters()) + list(prediction_network.parameters()) + list(action_encoder.parameters()), lr=args.learning_rate, weight_decay=args.weight_decay ) scheduler = CosineAnnealingLR(optimizer, T_max=args.num_epochs) scaler = GradScaler() # Initialize PPO Agent ppo_agent = PPOAgent( policy_network=prediction_network, optimizer=optim.AdamW(prediction_network.parameters(), lr=args.learning_rate), clip_epsilon=0.2, entropy_coef=0.01, value_coef=0.5 ) # Bundle World Model components world_model_components = (representation_network, dynamics_network, prediction_network, action_encoder, ppo_agent) print("Setup complete. Starting training...") for epoch in range(args.num_epochs): print(f"Epoch {epoch + 1}/{args.num_epochs} started.") # Train World Model avg_train_loss = train_epoch_world_model( world_model_components, train_loader, optimizer, scheduler, scaler, args, model_transformer, state_dim, d_model, # this is the embedding dimension input_dim ) print(f"World Model training epoch {epoch + 1} completed. Average loss: {avg_train_loss:.4f}") # Evaluate World Model avg_eval_loss = evaluate_world_model( world_model_components, model_transformer, eval_loader, args ) print(f"Evaluation for epoch {epoch + 1} completed. Average loss: {avg_eval_loss:.4f}") print(f"Epoch {epoch + 1}/{args.num_epochs}, Train Loss: {avg_train_loss:.4f}, Eval Loss: {avg_eval_loss:.4f}") # Save Models save_all_models(model_transformer, representation_network, dynamics_network, prediction_network, action_encoder, args.save_dir, epoch + 1) print(f"Models saved for epoch {epoch + 1}") print("Training completed.") if __name__ == '__main__': main()