File size: 3,129 Bytes
434d61d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
_A=None
import torch
from tqdm import tqdm
class LossSchedulerModel(torch.nn.Module):
def __init__(A,wx,we):super(LossSchedulerModel,A).__init__();assert len(wx.shape)==1 and len(we.shape)==2;B=wx.shape[0];assert B==we.shape[0]and B==we.shape[1];A.register_parameter('wx',torch.nn.Parameter(wx));A.register_parameter('we',torch.nn.Parameter(we))
def forward(A,t,xT,e_prev):
B=e_prev;assert t-len(B)+1==0;C=xT*A.wx[t]
for(D,E)in zip(B,A.we[t]):C+=D*E
return C.to(xT.dtype)
class LossScheduler:
def __init__(A,timesteps,model):A.timesteps=timesteps;A.model=model;A.init_noise_sigma=1.;A.order=1
@staticmethod
def load(path):A,B,C=torch.load(path,map_location='cpu');D=LossSchedulerModel(B,C);return LossScheduler(A,D)
def save(A,path):B,C,D=A.timesteps,A.model.wx,A.model.we;torch.save((B,C,D),path)
def set_timesteps(A,num_inference_steps,device='cuda'):B=device;A.xT=_A;A.e_prev=[];A.t_prev=-1;A.model=A.model.to(B);A.timesteps=A.timesteps.to(B)
def scale_model_input(A,sample,*B,**C):return sample
@torch.no_grad()
def step(self,model_output,timestep,sample,*D,**E):
A=self;B=A.timesteps.tolist().index(timestep);assert A.t_prev==-1 or B==A.t_prev+1
if A.t_prev==-1:A.xT=sample
A.e_prev.append(model_output);C=A.model(B,A.xT,A.e_prev)
if B+1==len(A.timesteps):A.xT=_A;A.e_prev=[];A.t_prev=-1
else:A.t_prev=B
return C,
class SchedulerWrapper:
def __init__(A,scheduler,loss_params_path='loss_params.pth'):A.scheduler=scheduler;A.catch_x,A.catch_e,A.catch_x_={},{},{};A.loss_scheduler=_A;A.loss_params_path=loss_params_path
def set_timesteps(A,num_inference_steps,**C):
D=num_inference_steps
if A.loss_scheduler is _A:B=A.scheduler.set_timesteps(D,**C);A.timesteps=A.scheduler.timesteps;A.init_noise_sigma=A.scheduler.init_noise_sigma;A.order=A.scheduler.order;return B
else:B=A.loss_scheduler.set_timesteps(D,**C);A.timesteps=A.loss_scheduler.timesteps;A.init_noise_sigma=A.scheduler.init_noise_sigma;A.order=A.scheduler.order;return B
def step(B,model_output,timestep,sample,**F):
D=sample;E=model_output;A=timestep
if B.loss_scheduler is _A:
C=B.scheduler.step(E,A,D,**F);A=A.tolist()
if A not in B.catch_x:B.catch_x[A]=[];B.catch_e[A]=[];B.catch_x_[A]=[]
B.catch_x[A].append(D.clone().detach().cpu());B.catch_e[A].append(E.clone().detach().cpu());B.catch_x_[A].append(C[0].clone().detach().cpu());return C
else:C=B.loss_scheduler.step(E,A,D,**F);return C
def scale_model_input(A,sample,timestep):return sample
def add_noise(A,original_samples,noise,timesteps):B=A.scheduler.add_noise(original_samples,noise,timesteps);return B
def get_path(C):
A=sorted([A for A in C.catch_x],reverse=True);B,D=[],[]
for E in A:F=torch.cat(C.catch_x[E],dim=0);B.append(F);G=torch.cat(C.catch_e[E],dim=0);D.append(G)
H=A[-1];I=torch.cat(C.catch_x_[H],dim=0);B.append(I);A=torch.tensor(A,dtype=torch.int32);B=torch.stack(B);D=torch.stack(D);return A,B,D
def load_loss_params(A):B,C,D=torch.load(A.loss_params_path,map_location='cpu');A.loss_model=LossSchedulerModel(C,D);A.loss_scheduler=LossScheduler(B,A.loss_model)
def prepare_loss(A,num_accelerate_steps=15):A.load_loss_params()
|