Rodo-Sami commited on
Commit
3a15297
1 Parent(s): 2f5156f

End of training

Browse files
Files changed (2) hide show
  1. README.md +147 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-0.5B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 6d762c66-b841-4dba-92e3-ceddc0b67beb
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.5.2`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: Qwen/Qwen2.5-0.5B
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 10700d782456e2b9_train_data.json
29
+ ds_type: json
30
+ field: text
31
+ path: /workspace/input_data/10700d782456e2b9_train_data.json
32
+ type: completion
33
+ debug: null
34
+ deepspeed: null
35
+ early_stopping_patience: 1
36
+ eval_max_new_tokens: 128
37
+ eval_steps: 25
38
+ eval_table_size: null
39
+ flash_attention: false
40
+ fp16: false
41
+ fsdp: null
42
+ fsdp_config: null
43
+ gradient_accumulation_steps: 16
44
+ gradient_checkpointing: true
45
+ group_by_length: true
46
+ hub_model_id: Rodo-Sami/6d762c66-b841-4dba-92e3-ceddc0b67beb
47
+ hub_repo: null
48
+ hub_strategy: checkpoint
49
+ hub_token: null
50
+ learning_rate: 0.0001
51
+ load_in_4bit: false
52
+ load_in_8bit: false
53
+ local_rank: null
54
+ logging_steps: 1
55
+ lora_alpha: 64
56
+ lora_dropout: 0.05
57
+ lora_fan_in_fan_out: null
58
+ lora_model_dir: null
59
+ lora_r: 32
60
+ lora_target_linear: true
61
+ lr_scheduler: cosine
62
+ max_steps: 50
63
+ micro_batch_size: 4
64
+ mlflow_experiment_name: /tmp/10700d782456e2b9_train_data.json
65
+ model_type: AutoModelForCausalLM
66
+ num_epochs: 2
67
+ optimizer: adamw_torch
68
+ output_dir: miner_id_24
69
+ pad_to_sequence_len: true
70
+ resume_from_checkpoint: null
71
+ s2_attention: null
72
+ sample_packing: false
73
+ save_steps: 25
74
+ sequence_len: 2048
75
+ strict: false
76
+ tf32: false
77
+ tokenizer_type: AutoTokenizer
78
+ train_on_inputs: false
79
+ trust_remote_code: true
80
+ val_set_size: 0.05
81
+ wandb_entity: null
82
+ wandb_mode: disabled
83
+ wandb_name: 6d762c66-b841-4dba-92e3-ceddc0b67beb
84
+ wandb_project: Gradients-On-Demand
85
+ wandb_run: your_name
86
+ wandb_runid: 6d762c66-b841-4dba-92e3-ceddc0b67beb
87
+ warmup_ratio: 0.05
88
+ weight_decay: 0.01
89
+ xformers_attention: true
90
+
91
+ ```
92
+
93
+ </details><br>
94
+
95
+ # 6d762c66-b841-4dba-92e3-ceddc0b67beb
96
+
97
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset.
98
+ It achieves the following results on the evaluation set:
99
+ - Loss: 1.2374
100
+
101
+ ## Model description
102
+
103
+ More information needed
104
+
105
+ ## Intended uses & limitations
106
+
107
+ More information needed
108
+
109
+ ## Training and evaluation data
110
+
111
+ More information needed
112
+
113
+ ## Training procedure
114
+
115
+ ### Training hyperparameters
116
+
117
+ The following hyperparameters were used during training:
118
+ - learning_rate: 0.0001
119
+ - train_batch_size: 4
120
+ - eval_batch_size: 4
121
+ - seed: 42
122
+ - distributed_type: multi-GPU
123
+ - num_devices: 4
124
+ - gradient_accumulation_steps: 16
125
+ - total_train_batch_size: 256
126
+ - total_eval_batch_size: 16
127
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
128
+ - lr_scheduler_type: cosine
129
+ - lr_scheduler_warmup_steps: 2
130
+ - training_steps: 50
131
+
132
+ ### Training results
133
+
134
+ | Training Loss | Epoch | Step | Validation Loss |
135
+ |:-------------:|:------:|:----:|:---------------:|
136
+ | 2.8932 | 0.0005 | 1 | 3.3460 |
137
+ | 1.0122 | 0.0135 | 25 | 1.2820 |
138
+ | 0.964 | 0.0270 | 50 | 1.2374 |
139
+
140
+
141
+ ### Framework versions
142
+
143
+ - PEFT 0.13.2
144
+ - Transformers 4.46.3
145
+ - Pytorch 2.3.1+cu121
146
+ - Datasets 3.1.0
147
+ - Tokenizers 0.20.3
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a68d78e7855f803cc0efdc4958f64e1625c826d890a9487b28c053edaa8a2257
3
+ size 70506570