Rodo-Sami commited on
Commit
26976ed
1 Parent(s): 80528ac

End of training

Browse files
Files changed (2) hide show
  1. README.md +150 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3
4
+ base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: edb41855-7266-4205-a88c-20f868ce28d0
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.5.2`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct
23
+ bf16: auto
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 557e1609420e0088_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/557e1609420e0088_train_data.json
32
+ type:
33
+ field_instruction: full_prompt
34
+ field_output: example
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: 1
42
+ eval_max_new_tokens: 128
43
+ eval_steps: 25
44
+ eval_table_size: null
45
+ flash_attention: false
46
+ fp16: false
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 16
50
+ gradient_checkpointing: true
51
+ group_by_length: true
52
+ hub_model_id: Rodo-Sami/edb41855-7266-4205-a88c-20f868ce28d0
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0001
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 1
61
+ lora_alpha: 64
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 32
66
+ lora_target_linear: true
67
+ lr_scheduler: cosine
68
+ max_steps: 50
69
+ micro_batch_size: 4
70
+ mlflow_experiment_name: /tmp/557e1609420e0088_train_data.json
71
+ model_type: AutoModelForCausalLM
72
+ num_epochs: 2
73
+ optimizer: adamw_torch
74
+ output_dir: miner_id_24
75
+ pad_to_sequence_len: true
76
+ resume_from_checkpoint: null
77
+ s2_attention: null
78
+ sample_packing: false
79
+ save_steps: 25
80
+ sequence_len: 2048
81
+ strict: false
82
+ tf32: false
83
+ tokenizer_type: AutoTokenizer
84
+ train_on_inputs: false
85
+ trust_remote_code: true
86
+ val_set_size: 0.05
87
+ wandb_entity: null
88
+ wandb_mode: disabled
89
+ wandb_name: edb41855-7266-4205-a88c-20f868ce28d0
90
+ wandb_project: Gradients-On-Demand
91
+ wandb_run: your_name
92
+ wandb_runid: edb41855-7266-4205-a88c-20f868ce28d0
93
+ warmup_ratio: 0.05
94
+ weight_decay: 0.01
95
+ xformers_attention: true
96
+
97
+ ```
98
+
99
+ </details><br>
100
+
101
+ # edb41855-7266-4205-a88c-20f868ce28d0
102
+
103
+ This model is a fine-tuned version of [aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct](https://huggingface.co/aisingapore/llama3-8b-cpt-sea-lionv2.1-instruct) on the None dataset.
104
+ It achieves the following results on the evaluation set:
105
+ - Loss: 0.8349
106
+
107
+ ## Model description
108
+
109
+ More information needed
110
+
111
+ ## Intended uses & limitations
112
+
113
+ More information needed
114
+
115
+ ## Training and evaluation data
116
+
117
+ More information needed
118
+
119
+ ## Training procedure
120
+
121
+ ### Training hyperparameters
122
+
123
+ The following hyperparameters were used during training:
124
+ - learning_rate: 0.0001
125
+ - train_batch_size: 4
126
+ - eval_batch_size: 4
127
+ - seed: 42
128
+ - distributed_type: multi-GPU
129
+ - num_devices: 4
130
+ - gradient_accumulation_steps: 16
131
+ - total_train_batch_size: 256
132
+ - total_eval_batch_size: 16
133
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
134
+ - lr_scheduler_type: cosine
135
+ - training_steps: 1
136
+
137
+ ### Training results
138
+
139
+ | Training Loss | Epoch | Step | Validation Loss |
140
+ |:-------------:|:-----:|:----:|:---------------:|
141
+ | 1.4653 | 1.0 | 1 | 0.8349 |
142
+
143
+
144
+ ### Framework versions
145
+
146
+ - PEFT 0.13.2
147
+ - Transformers 4.46.3
148
+ - Pytorch 2.3.1+cu121
149
+ - Datasets 3.1.0
150
+ - Tokenizers 0.20.3
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea62369a9f64a561bc31de54a11c8da9d9c23bab574fd93d9235183248873e59
3
+ size 335706186