metadata
library_name: transformers
license: apache-2.0
base_model: michiyasunaga/BioLinkBERT-base
tags:
- token-classification
- generated_from_trainer
datasets:
- Rodrigo1771/drugtemist-en-fasttext-75-ner
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: output
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: Rodrigo1771/drugtemist-en-fasttext-75-ner
type: Rodrigo1771/drugtemist-en-fasttext-75-ner
config: DrugTEMIST English NER
split: validation
args: DrugTEMIST English NER
metrics:
- name: Precision
type: precision
value: 0.9249771271729186
- name: Recall
type: recall
value: 0.9422180801491147
- name: F1
type: f1
value: 0.9335180055401663
- name: Accuracy
type: accuracy
value: 0.998772081600759
output
This model is a fine-tuned version of michiyasunaga/BioLinkBERT-base on the Rodrigo1771/drugtemist-en-fasttext-75-ner dataset. It achieves the following results on the evaluation set:
- Loss: 0.0076
- Precision: 0.9250
- Recall: 0.9422
- F1: 0.9335
- Accuracy: 0.9988
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0183 | 1.0 | 507 | 0.0055 | 0.8974 | 0.9376 | 0.9170 | 0.9985 |
0.0043 | 2.0 | 1014 | 0.0059 | 0.9099 | 0.9320 | 0.9208 | 0.9986 |
0.0022 | 3.0 | 1521 | 0.0057 | 0.9015 | 0.9301 | 0.9156 | 0.9985 |
0.0018 | 4.0 | 2028 | 0.0072 | 0.9275 | 0.9180 | 0.9227 | 0.9986 |
0.0009 | 5.0 | 2535 | 0.0064 | 0.9078 | 0.9357 | 0.9215 | 0.9987 |
0.0007 | 6.0 | 3042 | 0.0064 | 0.9194 | 0.9357 | 0.9275 | 0.9987 |
0.0004 | 7.0 | 3549 | 0.0072 | 0.9289 | 0.9376 | 0.9332 | 0.9988 |
0.0004 | 8.0 | 4056 | 0.0076 | 0.9250 | 0.9422 | 0.9335 | 0.9988 |
0.0003 | 9.0 | 4563 | 0.0077 | 0.9161 | 0.9366 | 0.9263 | 0.9987 |
0.0002 | 10.0 | 5070 | 0.0077 | 0.9195 | 0.9366 | 0.9280 | 0.9988 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1