--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-en-fasttext-75-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-en-fasttext-75-ner type: Rodrigo1771/drugtemist-en-fasttext-75-ner config: DrugTEMIST English NER split: validation args: DrugTEMIST English NER metrics: - name: Precision type: precision value: 0.9249771271729186 - name: Recall type: recall value: 0.9422180801491147 - name: F1 type: f1 value: 0.9335180055401663 - name: Accuracy type: accuracy value: 0.998772081600759 --- # output This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-75-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0076 - Precision: 0.9250 - Recall: 0.9422 - F1: 0.9335 - Accuracy: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0183 | 1.0 | 507 | 0.0055 | 0.8974 | 0.9376 | 0.9170 | 0.9985 | | 0.0043 | 2.0 | 1014 | 0.0059 | 0.9099 | 0.9320 | 0.9208 | 0.9986 | | 0.0022 | 3.0 | 1521 | 0.0057 | 0.9015 | 0.9301 | 0.9156 | 0.9985 | | 0.0018 | 4.0 | 2028 | 0.0072 | 0.9275 | 0.9180 | 0.9227 | 0.9986 | | 0.0009 | 5.0 | 2535 | 0.0064 | 0.9078 | 0.9357 | 0.9215 | 0.9987 | | 0.0007 | 6.0 | 3042 | 0.0064 | 0.9194 | 0.9357 | 0.9275 | 0.9987 | | 0.0004 | 7.0 | 3549 | 0.0072 | 0.9289 | 0.9376 | 0.9332 | 0.9988 | | 0.0004 | 8.0 | 4056 | 0.0076 | 0.9250 | 0.9422 | 0.9335 | 0.9988 | | 0.0003 | 9.0 | 4563 | 0.0077 | 0.9161 | 0.9366 | 0.9263 | 0.9987 | | 0.0002 | 10.0 | 5070 | 0.0077 | 0.9195 | 0.9366 | 0.9280 | 0.9988 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1