Rodrigo1771 commited on
Commit
d457a4b
1 Parent(s): fe65bfb

End of training

Browse files
README.md CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
 
6
  - generated_from_trainer
7
  datasets:
8
- - drugtemist-en-75-ner
9
  metrics:
10
  - precision
11
  - recall
@@ -18,24 +19,24 @@ model-index:
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
- name: drugtemist-en-75-ner
22
- type: drugtemist-en-75-ner
23
  config: DrugTEMIST English NER
24
  split: validation
25
  args: DrugTEMIST English NER
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.921028466483012
30
  - name: Recall
31
  type: recall
32
- value: 0.934762348555452
33
  - name: F1
34
  type: f1
35
- value: 0.9278445883441258
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9986883598917199
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,12 +44,12 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # output
45
 
46
- This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-75-ner dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0083
49
- - Precision: 0.9210
50
- - Recall: 0.9348
51
- - F1: 0.9278
52
  - Accuracy: 0.9987
53
 
54
  ## Model description
 
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
6
+ - token-classification
7
  - generated_from_trainer
8
  datasets:
9
+ - Rodrigo1771/drugtemist-en-75-ner
10
  metrics:
11
  - precision
12
  - recall
 
19
  name: Token Classification
20
  type: token-classification
21
  dataset:
22
+ name: Rodrigo1771/drugtemist-en-75-ner
23
+ type: Rodrigo1771/drugtemist-en-75-ner
24
  config: DrugTEMIST English NER
25
  split: validation
26
  args: DrugTEMIST English NER
27
  metrics:
28
  - name: Precision
29
  type: precision
30
+ value: 0.9342105263157895
31
  - name: Recall
32
  type: recall
33
+ value: 0.9263746505125815
34
  - name: F1
35
  type: f1
36
+ value: 0.930276087973795
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.9987162671280663
40
  ---
41
 
42
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  # output
46
 
47
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-75-ner dataset.
48
  It achieves the following results on the evaluation set:
49
+ - Loss: 0.0065
50
+ - Precision: 0.9342
51
+ - Recall: 0.9264
52
+ - F1: 0.9303
53
  - Accuracy: 0.9987
54
 
55
  ## Model description
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9987162671280663,
4
+ "eval_f1": 0.930276087973795,
5
+ "eval_loss": 0.0064844791777431965,
6
+ "eval_precision": 0.9342105263157895,
7
+ "eval_recall": 0.9263746505125815,
8
+ "eval_runtime": 13.1881,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 526.688,
11
+ "eval_steps_per_second": 65.893,
12
+ "predict_accuracy": 0.9986488402874071,
13
+ "predict_f1": 0.9212396929201025,
14
+ "predict_loss": 0.006953952368348837,
15
+ "predict_precision": 0.9025069637883009,
16
+ "predict_recall": 0.9407665505226481,
17
+ "predict_runtime": 26.178,
18
+ "predict_samples_per_second": 562.112,
19
+ "predict_steps_per_second": 70.288,
20
+ "total_flos": 1.394320679130096e+16,
21
+ "train_loss": 0.0030765269683407886,
22
+ "train_runtime": 1249.6681,
23
+ "train_samples": 32232,
24
+ "train_samples_per_second": 257.924,
25
+ "train_steps_per_second": 4.033
26
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9987162671280663,
4
+ "eval_f1": 0.930276087973795,
5
+ "eval_loss": 0.0064844791777431965,
6
+ "eval_precision": 0.9342105263157895,
7
+ "eval_recall": 0.9263746505125815,
8
+ "eval_runtime": 13.1881,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 526.688,
11
+ "eval_steps_per_second": 65.893
12
+ }
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9986488402874071,
3
+ "predict_f1": 0.9212396929201025,
4
+ "predict_loss": 0.006953952368348837,
5
+ "predict_precision": 0.9025069637883009,
6
+ "predict_recall": 0.9407665505226481,
7
+ "predict_runtime": 26.178,
8
+ "predict_samples_per_second": 562.112,
9
+ "predict_steps_per_second": 70.288
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
tb/events.out.tfevents.1725527837.6cb9bed92fd1.4510.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24dfba6e51d8a0727fb46592f105dea95aa3a1892fc3bb573fbee1166feae180
3
+ size 560
train.log CHANGED
@@ -1289,3 +1289,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1289
  {'eval_loss': 0.008253143168985844, 'eval_precision': 0.921028466483012, 'eval_recall': 0.934762348555452, 'eval_f1': 0.9278445883441258, 'eval_accuracy': 0.9986883598917199, 'eval_runtime': 13.7257, 'eval_samples_per_second': 506.057, 'eval_steps_per_second': 63.312, 'epoch': 10.0}
1290
  {'train_runtime': 1249.6681, 'train_samples_per_second': 257.924, 'train_steps_per_second': 4.033, 'train_loss': 0.0030765269683407886, 'epoch': 10.0}
1291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1292
  0%| | 0/869 [00:00<?, ?it/s]
1293
  1%| | 10/869 [00:00<00:08, 97.10it/s]
1294
  2%|▏ | 20/869 [00:00<00:09, 90.01it/s]
1295
  3%|▎ | 30/869 [00:00<00:09, 89.18it/s]
1296
  5%|▍ | 40/869 [00:00<00:09, 90.30it/s]
1297
  6%|▌ | 50/869 [00:00<00:08, 92.35it/s]
1298
  7%|▋ | 60/869 [00:00<00:08, 92.23it/s]
1299
  8%|▊ | 70/869 [00:00<00:08, 91.59it/s]
1300
  9%|▉ | 81/869 [00:00<00:08, 94.55it/s]
1301
  10%|█ | 91/869 [00:00<00:08, 96.01it/s]
1302
  12%|█▏ | 101/869 [00:01<00:07, 97.12it/s]
1303
  13%|█▎ | 111/869 [00:01<00:07, 94.84it/s]
1304
  14%|█▍ | 121/869 [00:01<00:07, 95.04it/s]
1305
  15%|█▌ | 131/869 [00:01<00:07, 93.42it/s]
1306
  16%|█▌ | 141/869 [00:01<00:07, 93.24it/s]
1307
  17%|█▋ | 151/869 [00:01<00:07, 93.28it/s]
1308
  19%|█▊ | 161/869 [00:01<00:07, 92.79it/s]
1309
  20%|█▉ | 171/869 [00:01<00:07, 91.74it/s]
1310
  21%|██ | 181/869 [00:01<00:07, 92.14it/s]
1311
  22%|██▏ | 191/869 [00:02<00:07, 91.28it/s]
1312
  23%|██▎ | 201/869 [00:02<00:07, 91.88it/s]
1313
  24%|██▍ | 211/869 [00:02<00:07, 92.23it/s]
1314
  25%|██▌ | 221/869 [00:02<00:06, 93.41it/s]
1315
  27%|██▋ | 231/869 [00:02<00:06, 92.39it/s]
1316
  28%|██▊ | 241/869 [00:02<00:07, 86.85it/s]
1317
  29%|██▉ | 251/869 [00:02<00:06, 89.50it/s]
1318
  30%|███ | 261/869 [00:02<00:06, 92.32it/s]
1319
  31%|███ | 271/869 [00:02<00:06, 92.37it/s]
1320
  32%|███▏ | 281/869 [00:03<00:06, 91.65it/s]
1321
  33%|███▎ | 291/869 [00:03<00:06, 91.10it/s]
1322
  35%|███▍ | 301/869 [00:03<00:06, 90.53it/s]
1323
  36%|███▌ | 311/869 [00:03<00:06, 90.71it/s]
1324
  37%|███▋ | 321/869 [00:03<00:06, 90.54it/s]
1325
  38%|███▊ | 331/869 [00:03<00:05, 92.74it/s]
1326
  39%|███▉ | 341/869 [00:03<00:05, 92.85it/s]
1327
  40%|████ | 351/869 [00:03<00:05, 89.75it/s]
1328
  42%|████▏ | 361/869 [00:03<00:05, 91.39it/s]
1329
  43%|████▎ | 371/869 [00:04<00:05, 92.76it/s]
1330
  44%|████▍ | 381/869 [00:04<00:05, 90.33it/s]
1331
  45%|████▍ | 391/869 [00:04<00:05, 87.76it/s]
1332
  46%|████▌ | 401/869 [00:04<00:05, 89.51it/s]
1333
  47%|████▋ | 411/869 [00:04<00:04, 91.66it/s]
1334
  48%|████▊ | 421/869 [00:04<00:04, 92.04it/s]
1335
  50%|████▉ | 431/869 [00:04<00:04, 93.80it/s]
1336
  51%|█████ | 441/869 [00:04<00:04, 90.42it/s]
1337
  52%|█████▏ | 451/869 [00:04<00:04, 90.86it/s]
1338
  53%|█████▎ | 461/869 [00:05<00:04, 90.51it/s]
1339
  54%|█████▍ | 471/869 [00:05<00:04, 92.69it/s]
1340
  55%|█████▌ | 482/869 [00:05<00:04, 95.27it/s]
1341
  57%|█████▋ | 492/869 [00:05<00:04, 92.82it/s]
1342
  58%|█████▊ | 502/869 [00:05<00:04, 91.33it/s]
1343
  59%|█████▉ | 512/869 [00:05<00:03, 93.04it/s]
1344
  60%|██████ | 522/869 [00:05<00:03, 90.12it/s]
1345
  61%|██████ | 532/869 [00:05<00:03, 91.17it/s]
1346
  62%|██████▏ | 542/869 [00:05<00:03, 90.57it/s]
1347
  64%|██████▎ | 552/869 [00:06<00:03, 92.71it/s]
1348
  65%|██████▍ | 562/869 [00:06<00:03, 94.03it/s]
1349
  66%|██████▌ | 572/869 [00:06<00:03, 93.29it/s]
1350
  67%|██████▋ | 582/869 [00:06<00:03, 91.83it/s]
1351
  68%|██████▊ | 592/869 [00:06<00:03, 91.81it/s]
1352
  69%|██████▉ | 602/869 [00:06<00:02, 93.95it/s]
1353
  70%|███████ | 612/869 [00:06<00:02, 92.85it/s]
1354
  72%|███████▏ | 622/869 [00:06<00:02, 92.26it/s]
1355
  73%|███████▎ | 632/869 [00:06<00:02, 92.74it/s]
1356
  74%|███████▍ | 642/869 [00:06<00:02, 91.09it/s]
1357
  75%|███████▌ | 652/869 [00:07<00:02, 92.01it/s]
1358
  76%|███████▌ | 662/869 [00:07<00:02, 91.29it/s]
1359
  77%|███████▋ | 672/869 [00:07<00:02, 93.02it/s]
1360
  78%|███████▊ | 682/869 [00:07<00:02, 86.69it/s]
1361
  80%|███████▉ | 692/869 [00:07<00:01, 89.55it/s]
1362
  81%|████████ | 702/869 [00:07<00:01, 89.54it/s]
1363
  82%|████████▏ | 712/869 [00:07<00:01, 91.99it/s]
1364
  83%|████████▎ | 722/869 [00:07<00:01, 91.92it/s]
1365
  84%|████████▍ | 732/869 [00:07<00:01, 93.22it/s]
1366
  85%|████████▌ | 742/869 [00:08<00:01, 93.18it/s]
1367
  87%|████████▋ | 752/869 [00:08<00:01, 92.20it/s]
1368
  88%|████████▊ | 763/869 [00:08<00:01, 95.00it/s]
1369
  89%|████████▉ | 773/869 [00:08<00:01, 92.74it/s]
1370
  90%|█████████ | 783/869 [00:08<00:00, 87.07it/s]
1371
  91%|█████████▏| 793/869 [00:08<00:00, 89.65it/s]
1372
  92%|█████████▏| 803/869 [00:08<00:00, 91.00it/s]
1373
  94%|█████████▎| 813/869 [00:08<00:00, 90.83it/s]
1374
  95%|█████████▍| 823/869 [00:08<00:00, 91.40it/s]
1375
  96%|█████████▌| 833/869 [00:09<00:00, 90.29it/s]
1376
  97%|█████████▋| 843/869 [00:09<00:00, 92.01it/s]
1377
  98%|█████████▊| 853/869 [00:09<00:00, 93.22it/s]
1378
  99%|█████████▉| 863/869 [00:09<00:00, 90.24it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379
  0%| | 0/1840 [00:00<?, ?it/s]
1380
  1%| | 11/1840 [00:00<00:17, 101.79it/s]
1381
  1%| | 22/1840 [00:00<00:19, 91.52it/s]
1382
  2%|▏ | 32/1840 [00:00<00:19, 94.89it/s]
1383
  2%|▏ | 42/1840 [00:00<00:18, 94.92it/s]
1384
  3%|▎ | 52/1840 [00:00<00:18, 94.68it/s]
1385
  3%|▎ | 62/1840 [00:00<00:19, 91.54it/s]
1386
  4%|▍ | 72/1840 [00:00<00:19, 91.04it/s]
1387
  4%|▍ | 82/1840 [00:00<00:19, 92.43it/s]
1388
  5%|▌ | 92/1840 [00:00<00:19, 90.95it/s]
1389
  6%|▌ | 102/1840 [00:01<00:18, 92.60it/s]
1390
  6%|▌ | 112/1840 [00:01<00:18, 93.15it/s]
1391
  7%|▋ | 122/1840 [00:01<00:18, 92.68it/s]
1392
  7%|▋ | 132/1840 [00:01<00:18, 92.00it/s]
1393
  8%|▊ | 142/1840 [00:01<00:18, 91.89it/s]
1394
  8%|▊ | 152/1840 [00:01<00:18, 92.54it/s]
1395
  9%|▉ | 162/1840 [00:01<00:18, 89.05it/s]
1396
  9%|▉ | 172/1840 [00:01<00:18, 90.17it/s]
1397
  10%|▉ | 182/1840 [00:01<00:17, 92.61it/s]
1398
  10%|█ | 192/1840 [00:02<00:17, 93.99it/s]
1399
  11%|█ | 202/1840 [00:02<00:17, 92.45it/s]
1400
  12%|█▏ | 212/1840 [00:02<00:17, 92.36it/s]
1401
  12%|█▏ | 222/1840 [00:02<00:17, 91.82it/s]
1402
  13%|█▎ | 232/1840 [00:02<00:17, 90.21it/s]
1403
  13%|█▎ | 242/1840 [00:02<00:18, 87.53it/s]
1404
  14%|█▎ | 251/1840 [00:02<00:18, 87.80it/s]
1405
  14%|█▍ | 260/1840 [00:02<00:18, 87.51it/s]
1406
  15%|█▍ | 270/1840 [00:02<00:17, 89.69it/s]
1407
  15%|█▌ | 280/1840 [00:03<00:16, 92.41it/s]
1408
  16%|█▌ | 290/1840 [00:03<00:16, 92.07it/s]
1409
  16%|█▋ | 300/1840 [00:03<00:16, 93.43it/s]
1410
  17%|█▋ | 310/1840 [00:03<00:16, 93.16it/s]
1411
  17%|█▋ | 320/1840 [00:03<00:16, 93.68it/s]
1412
  18%|█▊ | 330/1840 [00:03<00:15, 95.47it/s]
1413
  18%|█▊ | 340/1840 [00:03<00:15, 95.33it/s]
1414
  19%|█▉ | 350/1840 [00:03<00:15, 95.92it/s]
1415
  20%|█▉ | 360/1840 [00:03<00:15, 93.05it/s]
1416
  20%|██ | 370/1840 [00:04<00:15, 93.79it/s]
1417
  21%|██ | 380/1840 [00:04<00:15, 94.45it/s]
1418
  21%|██ | 390/1840 [00:04<00:15, 94.48it/s]
1419
  22%|██▏ | 400/1840 [00:04<00:15, 94.37it/s]
1420
  22%|██▏ | 410/1840 [00:04<00:15, 94.57it/s]
1421
  23%|██▎ | 420/1840 [00:04<00:15, 90.65it/s]
1422
  23%|██▎ | 430/1840 [00:04<00:15, 90.83it/s]
1423
  24%|██▍ | 440/1840 [00:04<00:15, 92.12it/s]
1424
  24%|██▍ | 450/1840 [00:04<00:15, 91.31it/s]
1425
  25%|██▌ | 460/1840 [00:04<00:14, 93.20it/s]
1426
  26%|██▌ | 470/1840 [00:05<00:14, 94.92it/s]
1427
  26%|██▌ | 480/1840 [00:05<00:15, 90.56it/s]
1428
  27%|██▋ | 490/1840 [00:05<00:14, 91.66it/s]
1429
  27%|██▋ | 500/1840 [00:05<00:14, 90.02it/s]
1430
  28%|██▊ | 510/1840 [00:05<00:14, 90.04it/s]
1431
  28%|██▊ | 520/1840 [00:05<00:14, 91.31it/s]
1432
  29%|██▉ | 530/1840 [00:05<00:14, 93.38it/s]
1433
  29%|██▉ | 540/1840 [00:05<00:14, 91.96it/s]
1434
  30%|██▉ | 550/1840 [00:05<00:13, 92.37it/s]
1435
  30%|███ | 560/1840 [00:06<00:13, 91.82it/s]
1436
  31%|███ | 570/1840 [00:06<00:13, 93.85it/s]
1437
  32%|███▏ | 580/1840 [00:06<00:13, 95.51it/s]
1438
  32%|███▏ | 590/1840 [00:06<00:13, 94.30it/s]
1439
  33%|███▎ | 600/1840 [00:06<00:13, 92.23it/s]
1440
  33%|███▎ | 610/1840 [00:06<00:13, 92.56it/s]
1441
  34%|███▎ | 620/1840 [00:06<00:13, 90.55it/s]
1442
  34%|███▍ | 630/1840 [00:06<00:13, 90.47it/s]
1443
  35%|███▍ | 640/1840 [00:06<00:13, 92.07it/s]
1444
  35%|███▌ | 650/1840 [00:07<00:12, 92.80it/s]
1445
  36%|███▌ | 660/1840 [00:07<00:13, 90.37it/s]
1446
  36%|███▋ | 670/1840 [00:07<00:12, 91.10it/s]
1447
  37%|███▋ | 680/1840 [00:07<00:12, 90.92it/s]
1448
  38%|███▊ | 690/1840 [00:07<00:12, 91.68it/s]
1449
  38%|███▊ | 700/1840 [00:07<00:12, 91.93it/s]
1450
  39%|███▊ | 710/1840 [00:07<00:12, 90.93it/s]
1451
  39%|███▉ | 720/1840 [00:07<00:12, 93.12it/s]
1452
  40%|███▉ | 731/1840 [00:07<00:11, 95.27it/s]
1453
  40%|████ | 741/1840 [00:08<00:11, 96.12it/s]
1454
  41%|████ | 751/1840 [00:08<00:11, 95.23it/s]
1455
  41%|████▏ | 761/1840 [00:08<00:11, 95.80it/s]
1456
  42%|████▏ | 771/1840 [00:08<00:11, 94.59it/s]
1457
  42%|████▏ | 781/1840 [00:08<00:11, 94.61it/s]
1458
  43%|████▎ | 791/1840 [00:08<00:11, 92.06it/s]
1459
  44%|████▎ | 801/1840 [00:08<00:11, 92.15it/s]
1460
  44%|████▍ | 811/1840 [00:08<00:11, 90.36it/s]
1461
  45%|████▍ | 821/1840 [00:08<00:11, 90.07it/s]
1462
  45%|████▌ | 831/1840 [00:09<00:11, 90.22it/s]
1463
  46%|████▌ | 841/1840 [00:09<00:10, 90.83it/s]
1464
  46%|████▋ | 851/1840 [00:09<00:10, 92.27it/s]
1465
  47%|████▋ | 861/1840 [00:09<00:10, 93.30it/s]
1466
  47%|████▋ | 871/1840 [00:09<00:10, 95.19it/s]
1467
  48%|████▊ | 881/1840 [00:09<00:10, 94.02it/s]
1468
  48%|████▊ | 891/1840 [00:09<00:10, 94.19it/s]
1469
  49%|████▉ | 901/1840 [00:09<00:10, 93.31it/s]
1470
  50%|████▉ | 911/1840 [00:09<00:09, 94.54it/s]
1471
  50%|█████ | 921/1840 [00:09<00:09, 94.97it/s]
1472
  51%|█████ | 931/1840 [00:10<00:09, 94.63it/s]
1473
  51%|█████ | 941/1840 [00:10<00:09, 91.83it/s]
1474
  52%|█████▏ | 951/1840 [00:10<00:09, 91.34it/s]
1475
  52%|█████▏ | 961/1840 [00:10<00:09, 90.38it/s]
1476
  53%|█████▎ | 971/1840 [00:10<00:09, 91.94it/s]
1477
  53%|█████▎ | 981/1840 [00:10<00:09, 91.00it/s]
1478
  54%|█████▍ | 991/1840 [00:10<00:09, 92.18it/s]
1479
  54%|█████▍ | 1001/1840 [00:10<00:09, 92.24it/s]
1480
  55%|█████▍ | 1011/1840 [00:10<00:08, 92.66it/s]
1481
  55%|█████▌ | 1021/1840 [00:11<00:08, 94.00it/s]
1482
  56%|█████▌ | 1031/1840 [00:11<00:08, 95.57it/s]
1483
  57%|█████▋ | 1041/1840 [00:11<00:08, 94.84it/s]
1484
  57%|█████▋ | 1051/1840 [00:11<00:08, 94.30it/s]
1485
  58%|█████▊ | 1061/1840 [00:11<00:08, 93.87it/s]
1486
  58%|█████▊ | 1071/1840 [00:11<00:08, 94.72it/s]
1487
  59%|█████▉ | 1081/1840 [00:11<00:08, 85.95it/s]
1488
  59%|█████▉ | 1091/1840 [00:11<00:08, 89.18it/s]
1489
  60%|█████▉ | 1101/1840 [00:11<00:08, 91.72it/s]
1490
  60%|██████ | 1111/1840 [00:12<00:07, 92.63it/s]
1491
  61%|██████ | 1121/1840 [00:12<00:07, 92.18it/s]
1492
  61%|██████▏ | 1131/1840 [00:12<00:07, 92.87it/s]
1493
  62%|██████▏ | 1141/1840 [00:12<00:07, 92.80it/s]
1494
  63%|██████▎ | 1151/1840 [00:12<00:07, 93.16it/s]
1495
  63%|██████▎ | 1161/1840 [00:12<00:07, 94.60it/s]
1496
  64%|██████▎ | 1171/1840 [00:12<00:07, 92.20it/s]
1497
  64%|██████▍ | 1181/1840 [00:12<00:07, 92.67it/s]
1498
  65%|██████▍ | 1191/1840 [00:12<00:07, 90.14it/s]
1499
  65%|██████▌ | 1201/1840 [00:12<00:06, 91.67it/s]
1500
  66%|██████▌ | 1211/1840 [00:13<00:06, 93.09it/s]
1501
  66%|██████▋ | 1221/1840 [00:13<00:06, 91.59it/s]
1502
  67%|██████▋ | 1231/1840 [00:13<00:06, 91.56it/s]
1503
  67%|██████▋ | 1241/1840 [00:13<00:06, 92.51it/s]
1504
  68%|██████▊ | 1251/1840 [00:13<00:06, 93.68it/s]
1505
  69%|██████▊ | 1261/1840 [00:13<00:06, 91.47it/s]
1506
  69%|██████▉ | 1271/1840 [00:13<00:06, 91.63it/s]
1507
  70%|██████▉ | 1281/1840 [00:13<00:06, 92.14it/s]
1508
  70%|███████ | 1291/1840 [00:13<00:05, 93.88it/s]
1509
  71%|███████ | 1301/1840 [00:14<00:05, 94.62it/s]
1510
  71%|███████▏ | 1312/1840 [00:14<00:05, 96.68it/s]
1511
  72%|███████▏ | 1322/1840 [00:14<00:05, 96.97it/s]
1512
  72%|███████▏ | 1332/1840 [00:14<00:05, 96.37it/s]
1513
  73%|███████▎ | 1342/1840 [00:14<00:05, 96.05it/s]
1514
  73%|███████▎ | 1352/1840 [00:14<00:05, 95.04it/s]
1515
  74%|███████▍ | 1362/1840 [00:14<00:05, 94.28it/s]
1516
  75%|███████▍ | 1372/1840 [00:14<00:04, 94.95it/s]
1517
  75%|███████▌ | 1382/1840 [00:14<00:04, 94.71it/s]
1518
  76%|███████▌ | 1393/1840 [00:15<00:04, 96.04it/s]
1519
  76%|███████▋ | 1403/1840 [00:15<00:04, 96.26it/s]
1520
  77%|███████▋ | 1414/1840 [00:15<00:04, 97.83it/s]
1521
  77%|███████▋ | 1425/1840 [00:15<00:04, 99.04it/s]
1522
  78%|███████▊ | 1435/1840 [00:15<00:04, 97.69it/s]
1523
  79%|███████▊ | 1445/1840 [00:15<00:04, 94.55it/s]
1524
  79%|███████▉ | 1455/1840 [00:15<00:04, 93.85it/s]
1525
  80%|███████▉ | 1466/1840 [00:15<00:03, 95.88it/s]
1526
  80%|████████ | 1476/1840 [00:15<00:03, 96.72it/s]
1527
  81%|████████ | 1486/1840 [00:15<00:03, 92.87it/s]
1528
  81%|████████▏ | 1496/1840 [00:16<00:03, 92.19it/s]
1529
  82%|████████▏ | 1506/1840 [00:16<00:03, 90.11it/s]
1530
  82%|████████▏ | 1516/1840 [00:16<00:03, 89.92it/s]
1531
  83%|████████▎ | 1526/1840 [00:16<00:03, 91.95it/s]
1532
  83%|████████▎ | 1536/1840 [00:16<00:03, 90.92it/s]
1533
  84%|████████▍ | 1546/1840 [00:16<00:03, 90.96it/s]
1534
  85%|████████▍ | 1556/1840 [00:16<00:03, 90.87it/s]
1535
  85%|████████▌ | 1566/1840 [00:16<00:02, 91.37it/s]
1536
  86%|████████▌ | 1576/1840 [00:16<00:02, 90.52it/s]
1537
  86%|████████▌ | 1586/1840 [00:17<00:02, 90.93it/s]
1538
  87%|████████▋ | 1596/1840 [00:17<00:02, 91.78it/s]
1539
  87%|████████▋ | 1606/1840 [00:17<00:02, 92.49it/s]
1540
  88%|████████▊ | 1616/1840 [00:17<00:02, 93.36it/s]
1541
  88%|████████▊ | 1626/1840 [00:17<00:02, 92.76it/s]
1542
  89%|████████▉ | 1636/1840 [00:17<00:02, 86.37it/s]
1543
  89%|████████▉ | 1646/1840 [00:17<00:02, 87.94it/s]
1544
  90%|█████████ | 1656/1840 [00:17<00:02, 89.41it/s]
1545
  91%|█████████ | 1666/1840 [00:17<00:01, 90.62it/s]
1546
  91%|█████████ | 1676/1840 [00:18<00:01, 90.24it/s]
1547
  92%|█████████▏| 1686/1840 [00:18<00:01, 90.23it/s]
1548
  92%|█████████▏| 1696/1840 [00:18<00:01, 92.31it/s]
1549
  93%|█████████▎| 1706/1840 [00:18<00:01, 91.76it/s]
1550
  93%|█████████▎| 1716/1840 [00:18<00:01, 91.75it/s]
1551
  94%|█████████▍| 1726/1840 [00:18<00:01, 92.98it/s]
1552
  94%|█████████▍| 1736/1840 [00:18<00:01, 90.98it/s]
1553
  95%|█████████▍| 1746/1840 [00:18<00:01, 91.89it/s]
1554
  95%|█████████▌| 1756/1840 [00:18<00:00, 93.73it/s]
1555
  96%|█████████▌| 1766/1840 [00:19<00:00, 95.14it/s]
1556
  97%|█████████▋| 1776/1840 [00:19<00:00, 94.88it/s]
1557
  97%|█████████▋| 1786/1840 [00:19<00:00, 95.14it/s]
1558
  98%|█████████▊| 1796/1840 [00:19<00:00, 96.49it/s]
1559
  98%|█████████▊| 1806/1840 [00:19<00:00, 94.16it/s]
1560
  99%|█████████▊| 1816/1840 [00:19<00:00, 93.01it/s]
1561
  99%|█████████▉| 1826/1840 [00:19<00:00, 94.52it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
  {'eval_loss': 0.008253143168985844, 'eval_precision': 0.921028466483012, 'eval_recall': 0.934762348555452, 'eval_f1': 0.9278445883441258, 'eval_accuracy': 0.9986883598917199, 'eval_runtime': 13.7257, 'eval_samples_per_second': 506.057, 'eval_steps_per_second': 63.312, 'epoch': 10.0}
1290
  {'train_runtime': 1249.6681, 'train_samples_per_second': 257.924, 'train_steps_per_second': 4.033, 'train_loss': 0.0030765269683407886, 'epoch': 10.0}
1291
 
1292
+ ***** train metrics *****
1293
+ epoch = 10.0
1294
+ total_flos = 12985623GF
1295
+ train_loss = 0.0031
1296
+ train_runtime = 0:20:49.66
1297
+ train_samples = 32232
1298
+ train_samples_per_second = 257.924
1299
+ train_steps_per_second = 4.033
1300
+ 09/05/2024 09:17:04 - INFO - __main__ - *** Evaluate ***
1301
+ [INFO|trainer.py:811] 2024-09-05 09:17:04,803 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, id, ner_tags. If tokens, id, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
1302
+ [INFO|trainer.py:3819] 2024-09-05 09:17:04,805 >>
1303
+ ***** Running Evaluation *****
1304
+ [INFO|trainer.py:3821] 2024-09-05 09:17:04,805 >> Num examples = 6946
1305
+ [INFO|trainer.py:3824] 2024-09-05 09:17:04,805 >> Batch size = 8
1306
+
1307
  0%| | 0/869 [00:00<?, ?it/s]
1308
  1%| | 10/869 [00:00<00:08, 97.10it/s]
1309
  2%|▏ | 20/869 [00:00<00:09, 90.01it/s]
1310
  3%|▎ | 30/869 [00:00<00:09, 89.18it/s]
1311
  5%|▍ | 40/869 [00:00<00:09, 90.30it/s]
1312
  6%|▌ | 50/869 [00:00<00:08, 92.35it/s]
1313
  7%|▋ | 60/869 [00:00<00:08, 92.23it/s]
1314
  8%|▊ | 70/869 [00:00<00:08, 91.59it/s]
1315
  9%|▉ | 81/869 [00:00<00:08, 94.55it/s]
1316
  10%|█ | 91/869 [00:00<00:08, 96.01it/s]
1317
  12%|█▏ | 101/869 [00:01<00:07, 97.12it/s]
1318
  13%|█▎ | 111/869 [00:01<00:07, 94.84it/s]
1319
  14%|█▍ | 121/869 [00:01<00:07, 95.04it/s]
1320
  15%|█▌ | 131/869 [00:01<00:07, 93.42it/s]
1321
  16%|█▌ | 141/869 [00:01<00:07, 93.24it/s]
1322
  17%|█▋ | 151/869 [00:01<00:07, 93.28it/s]
1323
  19%|█▊ | 161/869 [00:01<00:07, 92.79it/s]
1324
  20%|█▉ | 171/869 [00:01<00:07, 91.74it/s]
1325
  21%|██ | 181/869 [00:01<00:07, 92.14it/s]
1326
  22%|██▏ | 191/869 [00:02<00:07, 91.28it/s]
1327
  23%|██▎ | 201/869 [00:02<00:07, 91.88it/s]
1328
  24%|██▍ | 211/869 [00:02<00:07, 92.23it/s]
1329
  25%|██▌ | 221/869 [00:02<00:06, 93.41it/s]
1330
  27%|██▋ | 231/869 [00:02<00:06, 92.39it/s]
1331
  28%|██▊ | 241/869 [00:02<00:07, 86.85it/s]
1332
  29%|██▉ | 251/869 [00:02<00:06, 89.50it/s]
1333
  30%|███ | 261/869 [00:02<00:06, 92.32it/s]
1334
  31%|███ | 271/869 [00:02<00:06, 92.37it/s]
1335
  32%|███▏ | 281/869 [00:03<00:06, 91.65it/s]
1336
  33%|███▎ | 291/869 [00:03<00:06, 91.10it/s]
1337
  35%|███▍ | 301/869 [00:03<00:06, 90.53it/s]
1338
  36%|███▌ | 311/869 [00:03<00:06, 90.71it/s]
1339
  37%|███▋ | 321/869 [00:03<00:06, 90.54it/s]
1340
  38%|███▊ | 331/869 [00:03<00:05, 92.74it/s]
1341
  39%|███▉ | 341/869 [00:03<00:05, 92.85it/s]
1342
  40%|████ | 351/869 [00:03<00:05, 89.75it/s]
1343
  42%|████▏ | 361/869 [00:03<00:05, 91.39it/s]
1344
  43%|████▎ | 371/869 [00:04<00:05, 92.76it/s]
1345
  44%|████▍ | 381/869 [00:04<00:05, 90.33it/s]
1346
  45%|████▍ | 391/869 [00:04<00:05, 87.76it/s]
1347
  46%|████▌ | 401/869 [00:04<00:05, 89.51it/s]
1348
  47%|████▋ | 411/869 [00:04<00:04, 91.66it/s]
1349
  48%|████▊ | 421/869 [00:04<00:04, 92.04it/s]
1350
  50%|████▉ | 431/869 [00:04<00:04, 93.80it/s]
1351
  51%|█████ | 441/869 [00:04<00:04, 90.42it/s]
1352
  52%|█████▏ | 451/869 [00:04<00:04, 90.86it/s]
1353
  53%|█████▎ | 461/869 [00:05<00:04, 90.51it/s]
1354
  54%|█████▍ | 471/869 [00:05<00:04, 92.69it/s]
1355
  55%|█████▌ | 482/869 [00:05<00:04, 95.27it/s]
1356
  57%|█████▋ | 492/869 [00:05<00:04, 92.82it/s]
1357
  58%|█████▊ | 502/869 [00:05<00:04, 91.33it/s]
1358
  59%|█████▉ | 512/869 [00:05<00:03, 93.04it/s]
1359
  60%|██████ | 522/869 [00:05<00:03, 90.12it/s]
1360
  61%|██████ | 532/869 [00:05<00:03, 91.17it/s]
1361
  62%|██████▏ | 542/869 [00:05<00:03, 90.57it/s]
1362
  64%|██████▎ | 552/869 [00:06<00:03, 92.71it/s]
1363
  65%|██████▍ | 562/869 [00:06<00:03, 94.03it/s]
1364
  66%|██████▌ | 572/869 [00:06<00:03, 93.29it/s]
1365
  67%|██████▋ | 582/869 [00:06<00:03, 91.83it/s]
1366
  68%|██████▊ | 592/869 [00:06<00:03, 91.81it/s]
1367
  69%|██████▉ | 602/869 [00:06<00:02, 93.95it/s]
1368
  70%|███████ | 612/869 [00:06<00:02, 92.85it/s]
1369
  72%|███████▏ | 622/869 [00:06<00:02, 92.26it/s]
1370
  73%|███████▎ | 632/869 [00:06<00:02, 92.74it/s]
1371
  74%|███████▍ | 642/869 [00:06<00:02, 91.09it/s]
1372
  75%|███████▌ | 652/869 [00:07<00:02, 92.01it/s]
1373
  76%|███████▌ | 662/869 [00:07<00:02, 91.29it/s]
1374
  77%|███████▋ | 672/869 [00:07<00:02, 93.02it/s]
1375
  78%|███████▊ | 682/869 [00:07<00:02, 86.69it/s]
1376
  80%|███████▉ | 692/869 [00:07<00:01, 89.55it/s]
1377
  81%|████████ | 702/869 [00:07<00:01, 89.54it/s]
1378
  82%|████████▏ | 712/869 [00:07<00:01, 91.99it/s]
1379
  83%|████████▎ | 722/869 [00:07<00:01, 91.92it/s]
1380
  84%|████████▍ | 732/869 [00:07<00:01, 93.22it/s]
1381
  85%|████████▌ | 742/869 [00:08<00:01, 93.18it/s]
1382
  87%|████████▋ | 752/869 [00:08<00:01, 92.20it/s]
1383
  88%|████████▊ | 763/869 [00:08<00:01, 95.00it/s]
1384
  89%|████████▉ | 773/869 [00:08<00:01, 92.74it/s]
1385
  90%|█████████ | 783/869 [00:08<00:00, 87.07it/s]
1386
  91%|█████████▏| 793/869 [00:08<00:00, 89.65it/s]
1387
  92%|█████████▏| 803/869 [00:08<00:00, 91.00it/s]
1388
  94%|█████████▎| 813/869 [00:08<00:00, 90.83it/s]
1389
  95%|█████████▍| 823/869 [00:08<00:00, 91.40it/s]
1390
  96%|█████████▌| 833/869 [00:09<00:00, 90.29it/s]
1391
  97%|█████████▋| 843/869 [00:09<00:00, 92.01it/s]
1392
  98%|█████████▊| 853/869 [00:09<00:00, 93.22it/s]
1393
  99%|█████████▉| 863/869 [00:09<00:00, 90.24it/s]
1394
+ ***** eval metrics *****
1395
+ epoch = 10.0
1396
+ eval_accuracy = 0.9987
1397
+ eval_f1 = 0.9303
1398
+ eval_loss = 0.0065
1399
+ eval_precision = 0.9342
1400
+ eval_recall = 0.9264
1401
+ eval_runtime = 0:00:13.18
1402
+ eval_samples = 6946
1403
+ eval_samples_per_second = 526.688
1404
+ eval_steps_per_second = 65.893
1405
+ 09/05/2024 09:17:17 - INFO - __main__ - *** Predict ***
1406
+ [INFO|trainer.py:811] 2024-09-05 09:17:17,999 >> The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, id, ner_tags. If tokens, id, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
1407
+ [INFO|trainer.py:3819] 2024-09-05 09:17:18,002 >>
1408
+ ***** Running Prediction *****
1409
+ [INFO|trainer.py:3821] 2024-09-05 09:17:18,002 >> Num examples = 14715
1410
+ [INFO|trainer.py:3824] 2024-09-05 09:17:18,002 >> Batch size = 8
1411
+
1412
  0%| | 0/1840 [00:00<?, ?it/s]
1413
  1%| | 11/1840 [00:00<00:17, 101.79it/s]
1414
  1%| | 22/1840 [00:00<00:19, 91.52it/s]
1415
  2%|▏ | 32/1840 [00:00<00:19, 94.89it/s]
1416
  2%|▏ | 42/1840 [00:00<00:18, 94.92it/s]
1417
  3%|▎ | 52/1840 [00:00<00:18, 94.68it/s]
1418
  3%|▎ | 62/1840 [00:00<00:19, 91.54it/s]
1419
  4%|▍ | 72/1840 [00:00<00:19, 91.04it/s]
1420
  4%|▍ | 82/1840 [00:00<00:19, 92.43it/s]
1421
  5%|▌ | 92/1840 [00:00<00:19, 90.95it/s]
1422
  6%|▌ | 102/1840 [00:01<00:18, 92.60it/s]
1423
  6%|▌ | 112/1840 [00:01<00:18, 93.15it/s]
1424
  7%|▋ | 122/1840 [00:01<00:18, 92.68it/s]
1425
  7%|▋ | 132/1840 [00:01<00:18, 92.00it/s]
1426
  8%|▊ | 142/1840 [00:01<00:18, 91.89it/s]
1427
  8%|▊ | 152/1840 [00:01<00:18, 92.54it/s]
1428
  9%|▉ | 162/1840 [00:01<00:18, 89.05it/s]
1429
  9%|▉ | 172/1840 [00:01<00:18, 90.17it/s]
1430
  10%|▉ | 182/1840 [00:01<00:17, 92.61it/s]
1431
  10%|█ | 192/1840 [00:02<00:17, 93.99it/s]
1432
  11%|█ | 202/1840 [00:02<00:17, 92.45it/s]
1433
  12%|█▏ | 212/1840 [00:02<00:17, 92.36it/s]
1434
  12%|█▏ | 222/1840 [00:02<00:17, 91.82it/s]
1435
  13%|█▎ | 232/1840 [00:02<00:17, 90.21it/s]
1436
  13%|█▎ | 242/1840 [00:02<00:18, 87.53it/s]
1437
  14%|█▎ | 251/1840 [00:02<00:18, 87.80it/s]
1438
  14%|█▍ | 260/1840 [00:02<00:18, 87.51it/s]
1439
  15%|█▍ | 270/1840 [00:02<00:17, 89.69it/s]
1440
  15%|█▌ | 280/1840 [00:03<00:16, 92.41it/s]
1441
  16%|█▌ | 290/1840 [00:03<00:16, 92.07it/s]
1442
  16%|█▋ | 300/1840 [00:03<00:16, 93.43it/s]
1443
  17%|█▋ | 310/1840 [00:03<00:16, 93.16it/s]
1444
  17%|█▋ | 320/1840 [00:03<00:16, 93.68it/s]
1445
  18%|█▊ | 330/1840 [00:03<00:15, 95.47it/s]
1446
  18%|█▊ | 340/1840 [00:03<00:15, 95.33it/s]
1447
  19%|█▉ | 350/1840 [00:03<00:15, 95.92it/s]
1448
  20%|█▉ | 360/1840 [00:03<00:15, 93.05it/s]
1449
  20%|██ | 370/1840 [00:04<00:15, 93.79it/s]
1450
  21%|██ | 380/1840 [00:04<00:15, 94.45it/s]
1451
  21%|██ | 390/1840 [00:04<00:15, 94.48it/s]
1452
  22%|██▏ | 400/1840 [00:04<00:15, 94.37it/s]
1453
  22%|██▏ | 410/1840 [00:04<00:15, 94.57it/s]
1454
  23%|██▎ | 420/1840 [00:04<00:15, 90.65it/s]
1455
  23%|██▎ | 430/1840 [00:04<00:15, 90.83it/s]
1456
  24%|██▍ | 440/1840 [00:04<00:15, 92.12it/s]
1457
  24%|██▍ | 450/1840 [00:04<00:15, 91.31it/s]
1458
  25%|██▌ | 460/1840 [00:04<00:14, 93.20it/s]
1459
  26%|██▌ | 470/1840 [00:05<00:14, 94.92it/s]
1460
  26%|██▌ | 480/1840 [00:05<00:15, 90.56it/s]
1461
  27%|██▋ | 490/1840 [00:05<00:14, 91.66it/s]
1462
  27%|██▋ | 500/1840 [00:05<00:14, 90.02it/s]
1463
  28%|██▊ | 510/1840 [00:05<00:14, 90.04it/s]
1464
  28%|██▊ | 520/1840 [00:05<00:14, 91.31it/s]
1465
  29%|██▉ | 530/1840 [00:05<00:14, 93.38it/s]
1466
  29%|██▉ | 540/1840 [00:05<00:14, 91.96it/s]
1467
  30%|██▉ | 550/1840 [00:05<00:13, 92.37it/s]
1468
  30%|███ | 560/1840 [00:06<00:13, 91.82it/s]
1469
  31%|███ | 570/1840 [00:06<00:13, 93.85it/s]
1470
  32%|███▏ | 580/1840 [00:06<00:13, 95.51it/s]
1471
  32%|███▏ | 590/1840 [00:06<00:13, 94.30it/s]
1472
  33%|███▎ | 600/1840 [00:06<00:13, 92.23it/s]
1473
  33%|███▎ | 610/1840 [00:06<00:13, 92.56it/s]
1474
  34%|███▎ | 620/1840 [00:06<00:13, 90.55it/s]
1475
  34%|███▍ | 630/1840 [00:06<00:13, 90.47it/s]
1476
  35%|███▍ | 640/1840 [00:06<00:13, 92.07it/s]
1477
  35%|███▌ | 650/1840 [00:07<00:12, 92.80it/s]
1478
  36%|███▌ | 660/1840 [00:07<00:13, 90.37it/s]
1479
  36%|███▋ | 670/1840 [00:07<00:12, 91.10it/s]
1480
  37%|███▋ | 680/1840 [00:07<00:12, 90.92it/s]
1481
  38%|███▊ | 690/1840 [00:07<00:12, 91.68it/s]
1482
  38%|███▊ | 700/1840 [00:07<00:12, 91.93it/s]
1483
  39%|███▊ | 710/1840 [00:07<00:12, 90.93it/s]
1484
  39%|███▉ | 720/1840 [00:07<00:12, 93.12it/s]
1485
  40%|███▉ | 731/1840 [00:07<00:11, 95.27it/s]
1486
  40%|████ | 741/1840 [00:08<00:11, 96.12it/s]
1487
  41%|████ | 751/1840 [00:08<00:11, 95.23it/s]
1488
  41%|████▏ | 761/1840 [00:08<00:11, 95.80it/s]
1489
  42%|████▏ | 771/1840 [00:08<00:11, 94.59it/s]
1490
  42%|████▏ | 781/1840 [00:08<00:11, 94.61it/s]
1491
  43%|████▎ | 791/1840 [00:08<00:11, 92.06it/s]
1492
  44%|████▎ | 801/1840 [00:08<00:11, 92.15it/s]
1493
  44%|████▍ | 811/1840 [00:08<00:11, 90.36it/s]
1494
  45%|████▍ | 821/1840 [00:08<00:11, 90.07it/s]
1495
  45%|████▌ | 831/1840 [00:09<00:11, 90.22it/s]
1496
  46%|████▌ | 841/1840 [00:09<00:10, 90.83it/s]
1497
  46%|████▋ | 851/1840 [00:09<00:10, 92.27it/s]
1498
  47%|████▋ | 861/1840 [00:09<00:10, 93.30it/s]
1499
  47%|████▋ | 871/1840 [00:09<00:10, 95.19it/s]
1500
  48%|████▊ | 881/1840 [00:09<00:10, 94.02it/s]
1501
  48%|████▊ | 891/1840 [00:09<00:10, 94.19it/s]
1502
  49%|████▉ | 901/1840 [00:09<00:10, 93.31it/s]
1503
  50%|████▉ | 911/1840 [00:09<00:09, 94.54it/s]
1504
  50%|█████ | 921/1840 [00:09<00:09, 94.97it/s]
1505
  51%|█████ | 931/1840 [00:10<00:09, 94.63it/s]
1506
  51%|█████ | 941/1840 [00:10<00:09, 91.83it/s]
1507
  52%|█████▏ | 951/1840 [00:10<00:09, 91.34it/s]
1508
  52%|█████▏ | 961/1840 [00:10<00:09, 90.38it/s]
1509
  53%|█████▎ | 971/1840 [00:10<00:09, 91.94it/s]
1510
  53%|█████▎ | 981/1840 [00:10<00:09, 91.00it/s]
1511
  54%|█████▍ | 991/1840 [00:10<00:09, 92.18it/s]
1512
  54%|█████▍ | 1001/1840 [00:10<00:09, 92.24it/s]
1513
  55%|█████▍ | 1011/1840 [00:10<00:08, 92.66it/s]
1514
  55%|█████▌ | 1021/1840 [00:11<00:08, 94.00it/s]
1515
  56%|█████▌ | 1031/1840 [00:11<00:08, 95.57it/s]
1516
  57%|█████▋ | 1041/1840 [00:11<00:08, 94.84it/s]
1517
  57%|█████▋ | 1051/1840 [00:11<00:08, 94.30it/s]
1518
  58%|█████▊ | 1061/1840 [00:11<00:08, 93.87it/s]
1519
  58%|█████▊ | 1071/1840 [00:11<00:08, 94.72it/s]
1520
  59%|█████▉ | 1081/1840 [00:11<00:08, 85.95it/s]
1521
  59%|█████▉ | 1091/1840 [00:11<00:08, 89.18it/s]
1522
  60%|█████▉ | 1101/1840 [00:11<00:08, 91.72it/s]
1523
  60%|██████ | 1111/1840 [00:12<00:07, 92.63it/s]
1524
  61%|██████ | 1121/1840 [00:12<00:07, 92.18it/s]
1525
  61%|██████▏ | 1131/1840 [00:12<00:07, 92.87it/s]
1526
  62%|██████▏ | 1141/1840 [00:12<00:07, 92.80it/s]
1527
  63%|██████▎ | 1151/1840 [00:12<00:07, 93.16it/s]
1528
  63%|██████▎ | 1161/1840 [00:12<00:07, 94.60it/s]
1529
  64%|██████▎ | 1171/1840 [00:12<00:07, 92.20it/s]
1530
  64%|██████▍ | 1181/1840 [00:12<00:07, 92.67it/s]
1531
  65%|██████▍ | 1191/1840 [00:12<00:07, 90.14it/s]
1532
  65%|██████▌ | 1201/1840 [00:12<00:06, 91.67it/s]
1533
  66%|██████▌ | 1211/1840 [00:13<00:06, 93.09it/s]
1534
  66%|██████▋ | 1221/1840 [00:13<00:06, 91.59it/s]
1535
  67%|██████▋ | 1231/1840 [00:13<00:06, 91.56it/s]
1536
  67%|██████▋ | 1241/1840 [00:13<00:06, 92.51it/s]
1537
  68%|██████▊ | 1251/1840 [00:13<00:06, 93.68it/s]
1538
  69%|██████▊ | 1261/1840 [00:13<00:06, 91.47it/s]
1539
  69%|██████▉ | 1271/1840 [00:13<00:06, 91.63it/s]
1540
  70%|██████▉ | 1281/1840 [00:13<00:06, 92.14it/s]
1541
  70%|███████ | 1291/1840 [00:13<00:05, 93.88it/s]
1542
  71%|███████ | 1301/1840 [00:14<00:05, 94.62it/s]
1543
  71%|███████▏ | 1312/1840 [00:14<00:05, 96.68it/s]
1544
  72%|███████▏ | 1322/1840 [00:14<00:05, 96.97it/s]
1545
  72%|███████▏ | 1332/1840 [00:14<00:05, 96.37it/s]
1546
  73%|███████▎ | 1342/1840 [00:14<00:05, 96.05it/s]
1547
  73%|███████▎ | 1352/1840 [00:14<00:05, 95.04it/s]
1548
  74%|███████▍ | 1362/1840 [00:14<00:05, 94.28it/s]
1549
  75%|███████▍ | 1372/1840 [00:14<00:04, 94.95it/s]
1550
  75%|███████▌ | 1382/1840 [00:14<00:04, 94.71it/s]
1551
  76%|███████▌ | 1393/1840 [00:15<00:04, 96.04it/s]
1552
  76%|███████▋ | 1403/1840 [00:15<00:04, 96.26it/s]
1553
  77%|███████▋ | 1414/1840 [00:15<00:04, 97.83it/s]
1554
  77%|███████▋ | 1425/1840 [00:15<00:04, 99.04it/s]
1555
  78%|███████▊ | 1435/1840 [00:15<00:04, 97.69it/s]
1556
  79%|███████▊ | 1445/1840 [00:15<00:04, 94.55it/s]
1557
  79%|███████▉ | 1455/1840 [00:15<00:04, 93.85it/s]
1558
  80%|███████▉ | 1466/1840 [00:15<00:03, 95.88it/s]
1559
  80%|████████ | 1476/1840 [00:15<00:03, 96.72it/s]
1560
  81%|████████ | 1486/1840 [00:15<00:03, 92.87it/s]
1561
  81%|████████▏ | 1496/1840 [00:16<00:03, 92.19it/s]
1562
  82%|████████▏ | 1506/1840 [00:16<00:03, 90.11it/s]
1563
  82%|████████▏ | 1516/1840 [00:16<00:03, 89.92it/s]
1564
  83%|████████▎ | 1526/1840 [00:16<00:03, 91.95it/s]
1565
  83%|████████▎ | 1536/1840 [00:16<00:03, 90.92it/s]
1566
  84%|████████▍ | 1546/1840 [00:16<00:03, 90.96it/s]
1567
  85%|████████▍ | 1556/1840 [00:16<00:03, 90.87it/s]
1568
  85%|████████▌ | 1566/1840 [00:16<00:02, 91.37it/s]
1569
  86%|████████▌ | 1576/1840 [00:16<00:02, 90.52it/s]
1570
  86%|████████▌ | 1586/1840 [00:17<00:02, 90.93it/s]
1571
  87%|████████▋ | 1596/1840 [00:17<00:02, 91.78it/s]
1572
  87%|████████▋ | 1606/1840 [00:17<00:02, 92.49it/s]
1573
  88%|████████▊ | 1616/1840 [00:17<00:02, 93.36it/s]
1574
  88%|████████▊ | 1626/1840 [00:17<00:02, 92.76it/s]
1575
  89%|████████▉ | 1636/1840 [00:17<00:02, 86.37it/s]
1576
  89%|████████▉ | 1646/1840 [00:17<00:02, 87.94it/s]
1577
  90%|█████████ | 1656/1840 [00:17<00:02, 89.41it/s]
1578
  91%|█████████ | 1666/1840 [00:17<00:01, 90.62it/s]
1579
  91%|█████████ | 1676/1840 [00:18<00:01, 90.24it/s]
1580
  92%|█████████▏| 1686/1840 [00:18<00:01, 90.23it/s]
1581
  92%|█████████▏| 1696/1840 [00:18<00:01, 92.31it/s]
1582
  93%|█████████▎| 1706/1840 [00:18<00:01, 91.76it/s]
1583
  93%|█████████▎| 1716/1840 [00:18<00:01, 91.75it/s]
1584
  94%|█████████▍| 1726/1840 [00:18<00:01, 92.98it/s]
1585
  94%|█████████▍| 1736/1840 [00:18<00:01, 90.98it/s]
1586
  95%|█████████▍| 1746/1840 [00:18<00:01, 91.89it/s]
1587
  95%|█████████▌| 1756/1840 [00:18<00:00, 93.73it/s]
1588
  96%|█████████▌| 1766/1840 [00:19<00:00, 95.14it/s]
1589
  97%|█████████▋| 1776/1840 [00:19<00:00, 94.88it/s]
1590
  97%|█████████▋| 1786/1840 [00:19<00:00, 95.14it/s]
1591
  98%|█████████▊| 1796/1840 [00:19<00:00, 96.49it/s]
1592
  98%|█████████▊| 1806/1840 [00:19<00:00, 94.16it/s]
1593
  99%|█████████▊| 1816/1840 [00:19<00:00, 93.01it/s]
1594
  99%|█████████▉| 1826/1840 [00:19<00:00, 94.52it/s]
1595
+ [INFO|trainer.py:3503] 2024-09-05 09:17:44,719 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1596
+ [INFO|configuration_utils.py:472] 2024-09-05 09:17:44,720 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1597
+ [INFO|modeling_utils.py:2799] 2024-09-05 09:17:46,010 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1598
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 09:17:46,011 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1599
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 09:17:46,011 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1600
+ ***** predict metrics *****
1601
+ predict_accuracy = 0.9986
1602
+ predict_f1 = 0.9212
1603
+ predict_loss = 0.007
1604
+ predict_precision = 0.9025
1605
+ predict_recall = 0.9408
1606
+ predict_runtime = 0:00:26.17
1607
+ predict_samples_per_second = 562.112
1608
+ predict_steps_per_second = 70.288
1609
+
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.394320679130096e+16,
4
+ "train_loss": 0.0030765269683407886,
5
+ "train_runtime": 1249.6681,
6
+ "train_samples": 32232,
7
+ "train_samples_per_second": 257.924,
8
+ "train_steps_per_second": 4.033
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.930276087973795,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2016",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 5040,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9920634920634921,
13
+ "grad_norm": 0.06281786412000656,
14
+ "learning_rate": 4.503968253968254e-05,
15
+ "loss": 0.0189,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 1.0,
20
+ "eval_accuracy": 0.9983953339100828,
21
+ "eval_f1": 0.9040358744394619,
22
+ "eval_loss": 0.00518822530284524,
23
+ "eval_precision": 0.8712186689714779,
24
+ "eval_recall": 0.9394221808014911,
25
+ "eval_runtime": 13.2131,
26
+ "eval_samples_per_second": 525.689,
27
+ "eval_steps_per_second": 65.768,
28
+ "step": 504
29
+ },
30
+ {
31
+ "epoch": 1.9841269841269842,
32
+ "grad_norm": 0.20689290761947632,
33
+ "learning_rate": 4.007936507936508e-05,
34
+ "loss": 0.0047,
35
+ "step": 1000
36
+ },
37
+ {
38
+ "epoch": 2.0,
39
+ "eval_accuracy": 0.9986883598917199,
40
+ "eval_f1": 0.9244402985074627,
41
+ "eval_loss": 0.004834321793168783,
42
+ "eval_precision": 0.9253034547152195,
43
+ "eval_recall": 0.923578751164958,
44
+ "eval_runtime": 13.2434,
45
+ "eval_samples_per_second": 524.487,
46
+ "eval_steps_per_second": 65.618,
47
+ "step": 1008
48
+ },
49
+ {
50
+ "epoch": 2.9761904761904763,
51
+ "grad_norm": 0.02256501279771328,
52
+ "learning_rate": 3.511904761904762e-05,
53
+ "loss": 0.0027,
54
+ "step": 1500
55
+ },
56
+ {
57
+ "epoch": 3.0,
58
+ "eval_accuracy": 0.9986255686099406,
59
+ "eval_f1": 0.9239384041063929,
60
+ "eval_loss": 0.005881821736693382,
61
+ "eval_precision": 0.9252336448598131,
62
+ "eval_recall": 0.9226467847157502,
63
+ "eval_runtime": 13.1715,
64
+ "eval_samples_per_second": 527.351,
65
+ "eval_steps_per_second": 65.976,
66
+ "step": 1512
67
+ },
68
+ {
69
+ "epoch": 3.9682539682539684,
70
+ "grad_norm": 0.0326182059943676,
71
+ "learning_rate": 3.0158730158730158e-05,
72
+ "loss": 0.0015,
73
+ "step": 2000
74
+ },
75
+ {
76
+ "epoch": 4.0,
77
+ "eval_accuracy": 0.9987162671280663,
78
+ "eval_f1": 0.930276087973795,
79
+ "eval_loss": 0.0064844791777431965,
80
+ "eval_precision": 0.9342105263157895,
81
+ "eval_recall": 0.9263746505125815,
82
+ "eval_runtime": 13.5939,
83
+ "eval_samples_per_second": 510.963,
84
+ "eval_steps_per_second": 63.926,
85
+ "step": 2016
86
+ },
87
+ {
88
+ "epoch": 4.9603174603174605,
89
+ "grad_norm": 0.1600140929222107,
90
+ "learning_rate": 2.5198412698412697e-05,
91
+ "loss": 0.0011,
92
+ "step": 2500
93
+ },
94
+ {
95
+ "epoch": 5.0,
96
+ "eval_accuracy": 0.9986116149917673,
97
+ "eval_f1": 0.923076923076923,
98
+ "eval_loss": 0.007346163038164377,
99
+ "eval_precision": 0.9072907290729073,
100
+ "eval_recall": 0.9394221808014911,
101
+ "eval_runtime": 13.3438,
102
+ "eval_samples_per_second": 520.543,
103
+ "eval_steps_per_second": 65.124,
104
+ "step": 2520
105
+ },
106
+ {
107
+ "epoch": 5.9523809523809526,
108
+ "grad_norm": 0.09641193598508835,
109
+ "learning_rate": 2.023809523809524e-05,
110
+ "loss": 0.0005,
111
+ "step": 3000
112
+ },
113
+ {
114
+ "epoch": 6.0,
115
+ "eval_accuracy": 0.998444171573689,
116
+ "eval_f1": 0.9204281060958585,
117
+ "eval_loss": 0.009004838764667511,
118
+ "eval_precision": 0.9191449814126395,
119
+ "eval_recall": 0.9217148182665424,
120
+ "eval_runtime": 13.3195,
121
+ "eval_samples_per_second": 521.491,
122
+ "eval_steps_per_second": 65.243,
123
+ "step": 3024
124
+ },
125
+ {
126
+ "epoch": 6.944444444444445,
127
+ "grad_norm": 0.029784763231873512,
128
+ "learning_rate": 1.527777777777778e-05,
129
+ "loss": 0.0007,
130
+ "step": 3500
131
+ },
132
+ {
133
+ "epoch": 7.0,
134
+ "eval_accuracy": 0.9985767309463344,
135
+ "eval_f1": 0.9190432382704691,
136
+ "eval_loss": 0.008385799825191498,
137
+ "eval_precision": 0.9073569482288828,
138
+ "eval_recall": 0.9310344827586207,
139
+ "eval_runtime": 13.4485,
140
+ "eval_samples_per_second": 516.487,
141
+ "eval_steps_per_second": 64.617,
142
+ "step": 3528
143
+ },
144
+ {
145
+ "epoch": 7.936507936507937,
146
+ "grad_norm": 0.0010318646673113108,
147
+ "learning_rate": 1.0317460317460318e-05,
148
+ "loss": 0.0004,
149
+ "step": 4000
150
+ },
151
+ {
152
+ "epoch": 8.0,
153
+ "eval_accuracy": 0.9985558005190746,
154
+ "eval_f1": 0.9213793103448276,
155
+ "eval_loss": 0.008501913398504257,
156
+ "eval_precision": 0.9092558983666061,
157
+ "eval_recall": 0.9338303821062441,
158
+ "eval_runtime": 13.3613,
159
+ "eval_samples_per_second": 519.86,
160
+ "eval_steps_per_second": 65.039,
161
+ "step": 4032
162
+ },
163
+ {
164
+ "epoch": 8.928571428571429,
165
+ "grad_norm": 0.0005677491426467896,
166
+ "learning_rate": 5.357142857142857e-06,
167
+ "loss": 0.0003,
168
+ "step": 4500
169
+ },
170
+ {
171
+ "epoch": 9.0,
172
+ "eval_accuracy": 0.9987023135098931,
173
+ "eval_f1": 0.9270544783010157,
174
+ "eval_loss": 0.008021777495741844,
175
+ "eval_precision": 0.918572735590119,
176
+ "eval_recall": 0.9356943150046598,
177
+ "eval_runtime": 13.487,
178
+ "eval_samples_per_second": 515.014,
179
+ "eval_steps_per_second": 64.432,
180
+ "step": 4536
181
+ },
182
+ {
183
+ "epoch": 9.920634920634921,
184
+ "grad_norm": 0.0005077613168396056,
185
+ "learning_rate": 3.9682539682539683e-07,
186
+ "loss": 0.0002,
187
+ "step": 5000
188
+ },
189
+ {
190
+ "epoch": 10.0,
191
+ "eval_accuracy": 0.9986883598917199,
192
+ "eval_f1": 0.9278445883441258,
193
+ "eval_loss": 0.008253143168985844,
194
+ "eval_precision": 0.921028466483012,
195
+ "eval_recall": 0.934762348555452,
196
+ "eval_runtime": 13.7257,
197
+ "eval_samples_per_second": 506.057,
198
+ "eval_steps_per_second": 63.312,
199
+ "step": 5040
200
+ },
201
+ {
202
+ "epoch": 10.0,
203
+ "step": 5040,
204
+ "total_flos": 1.394320679130096e+16,
205
+ "train_loss": 0.0030765269683407886,
206
+ "train_runtime": 1249.6681,
207
+ "train_samples_per_second": 257.924,
208
+ "train_steps_per_second": 4.033
209
+ }
210
+ ],
211
+ "logging_steps": 500,
212
+ "max_steps": 5040,
213
+ "num_input_tokens_seen": 0,
214
+ "num_train_epochs": 10,
215
+ "save_steps": 500,
216
+ "stateful_callbacks": {
217
+ "TrainerControl": {
218
+ "args": {
219
+ "should_epoch_stop": false,
220
+ "should_evaluate": false,
221
+ "should_log": false,
222
+ "should_save": true,
223
+ "should_training_stop": true
224
+ },
225
+ "attributes": {}
226
+ }
227
+ },
228
+ "total_flos": 1.394320679130096e+16,
229
+ "train_batch_size": 32,
230
+ "trial_name": null,
231
+ "trial_params": null
232
+ }