--- library_name: transformers license: apache-2.0 base_model: michiyasunaga/BioLinkBERT-base tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/drugtemist-en-85-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/drugtemist-en-85-ner type: Rodrigo1771/drugtemist-en-85-ner config: DrugTEMIST English NER split: validation args: DrugTEMIST English NER metrics: - name: Precision type: precision value: 0.9302325581395349 - name: Recall type: recall value: 0.9319664492078286 - name: F1 type: f1 value: 0.931098696461825 - name: Accuracy type: accuracy value: 0.9986534758462869 --- # output This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-85-ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0083 - Precision: 0.9302 - Recall: 0.9320 - F1: 0.9311 - Accuracy: 0.9987 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.9989 | 457 | 0.0056 | 0.8730 | 0.9292 | 0.9002 | 0.9983 | | 0.0158 | 2.0 | 915 | 0.0066 | 0.8625 | 0.9357 | 0.8976 | 0.9981 | | 0.0037 | 2.9989 | 1372 | 0.0056 | 0.9247 | 0.9161 | 0.9204 | 0.9986 | | 0.0025 | 4.0 | 1830 | 0.0064 | 0.9234 | 0.9096 | 0.9164 | 0.9985 | | 0.0015 | 4.9989 | 2287 | 0.0061 | 0.9193 | 0.9236 | 0.9214 | 0.9985 | | 0.0008 | 6.0 | 2745 | 0.0074 | 0.9282 | 0.9273 | 0.9277 | 0.9986 | | 0.0006 | 6.9989 | 3202 | 0.0077 | 0.9305 | 0.9226 | 0.9265 | 0.9986 | | 0.0003 | 8.0 | 3660 | 0.0082 | 0.9282 | 0.9282 | 0.9282 | 0.9986 | | 0.0004 | 8.9989 | 4117 | 0.0083 | 0.9290 | 0.9264 | 0.9277 | 0.9986 | | 0.0002 | 9.9891 | 4570 | 0.0083 | 0.9302 | 0.9320 | 0.9311 | 0.9987 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1