Rodrigo1771 commited on
Commit
02f7701
·
verified ·
1 Parent(s): e522f44

End of training

Browse files
README.md CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
 
6
  - generated_from_trainer
7
  datasets:
8
- - drugtemist-en-9-ner
9
  metrics:
10
  - precision
11
  - recall
@@ -18,24 +19,24 @@ model-index:
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
- name: drugtemist-en-9-ner
22
- type: drugtemist-en-9-ner
23
  config: DrugTEMIST English NER
24
  split: validation
25
  args: DrugTEMIST English NER
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.924860853432282
30
  - name: Recall
31
  type: recall
32
- value: 0.9291705498602051
33
  - name: F1
34
  type: f1
35
- value: 0.9270106927010694
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9986534758462869
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,13 +44,13 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # output
45
 
46
- This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-9-ner dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0071
49
- - Precision: 0.9249
50
- - Recall: 0.9292
51
- - F1: 0.9270
52
- - Accuracy: 0.9987
53
 
54
  ## Model description
55
 
 
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
6
+ - token-classification
7
  - generated_from_trainer
8
  datasets:
9
+ - Rodrigo1771/drugtemist-en-9-ner
10
  metrics:
11
  - precision
12
  - recall
 
19
  name: Token Classification
20
  type: token-classification
21
  dataset:
22
+ name: Rodrigo1771/drugtemist-en-9-ner
23
+ type: Rodrigo1771/drugtemist-en-9-ner
24
  config: DrugTEMIST English NER
25
  split: validation
26
  args: DrugTEMIST English NER
27
  metrics:
28
  - name: Precision
29
  type: precision
30
+ value: 0.9297597042513863
31
  - name: Recall
32
  type: recall
33
+ value: 0.9375582479030755
34
  - name: F1
35
  type: f1
36
+ value: 0.9336426914153132
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.9987999888371054
40
  ---
41
 
42
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  # output
46
 
47
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-9-ner dataset.
48
  It achieves the following results on the evaluation set:
49
+ - Loss: 0.0046
50
+ - Precision: 0.9298
51
+ - Recall: 0.9376
52
+ - F1: 0.9336
53
+ - Accuracy: 0.9988
54
 
55
  ## Model description
56
 
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9987999888371054,
4
+ "eval_f1": 0.9336426914153132,
5
+ "eval_loss": 0.004605981521308422,
6
+ "eval_precision": 0.9297597042513863,
7
+ "eval_recall": 0.9375582479030755,
8
+ "eval_runtime": 13.2724,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 523.342,
11
+ "eval_steps_per_second": 65.474,
12
+ "predict_accuracy": 0.9986882326988529,
13
+ "predict_f1": 0.9205633802816902,
14
+ "predict_loss": 0.004973105154931545,
15
+ "predict_precision": 0.8938730853391685,
16
+ "predict_recall": 0.9488966318234611,
17
+ "predict_runtime": 25.752,
18
+ "predict_samples_per_second": 571.412,
19
+ "predict_steps_per_second": 71.451,
20
+ "total_flos": 1.1151464037050934e+16,
21
+ "train_loss": 0.002938754050150616,
22
+ "train_runtime": 1039.0289,
23
+ "train_samples": 27967,
24
+ "train_samples_per_second": 269.165,
25
+ "train_steps_per_second": 4.206
26
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "eval_accuracy": 0.9987999888371054,
4
+ "eval_f1": 0.9336426914153132,
5
+ "eval_loss": 0.004605981521308422,
6
+ "eval_precision": 0.9297597042513863,
7
+ "eval_recall": 0.9375582479030755,
8
+ "eval_runtime": 13.2724,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 523.342,
11
+ "eval_steps_per_second": 65.474
12
+ }
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9986882326988529,
3
+ "predict_f1": 0.9205633802816902,
4
+ "predict_loss": 0.004973105154931545,
5
+ "predict_precision": 0.8938730853391685,
6
+ "predict_recall": 0.9488966318234611,
7
+ "predict_runtime": 25.752,
8
+ "predict_samples_per_second": 571.412,
9
+ "predict_steps_per_second": 71.451
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
tb/events.out.tfevents.1725570294.c3806e32a2f8.1237.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8921f39abba2cbc517633b1fc318ac0654a4e096e416d5ce4dde888385d854c5
3
+ size 560
train.log CHANGED
@@ -1280,3 +1280,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1280
  {'eval_loss': 0.00707679707556963, 'eval_precision': 0.924860853432282, 'eval_recall': 0.9291705498602051, 'eval_f1': 0.9270106927010694, 'eval_accuracy': 0.9986534758462869, 'eval_runtime': 13.4189, 'eval_samples_per_second': 517.629, 'eval_steps_per_second': 64.76, 'epoch': 10.0}
1281
  {'train_runtime': 1039.0289, 'train_samples_per_second': 269.165, 'train_steps_per_second': 4.206, 'train_loss': 0.002938754050150616, 'epoch': 10.0}
1282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283
  0%| | 0/869 [00:00<?, ?it/s]
1284
  1%| | 10/869 [00:00<00:08, 98.30it/s]
1285
  2%|▏ | 20/869 [00:00<00:09, 88.58it/s]
1286
  3%|▎ | 29/869 [00:00<00:09, 88.26it/s]
1287
  4%|▍ | 38/869 [00:00<00:09, 88.48it/s]
1288
  6%|▌ | 48/869 [00:00<00:09, 90.80it/s]
1289
  7%|▋ | 58/869 [00:00<00:08, 91.97it/s]
1290
  8%|▊ | 68/869 [00:00<00:08, 90.67it/s]
1291
  9%|▉ | 78/869 [00:00<00:08, 90.51it/s]
1292
  10%|█ | 89/869 [00:00<00:08, 93.51it/s]
1293
  12%|█▏ | 100/869 [00:01<00:08, 95.79it/s]
1294
  13%|█▎ | 110/869 [00:01<00:08, 94.19it/s]
1295
  14%|█▍ | 120/869 [00:01<00:07, 94.41it/s]
1296
  15%|█▍ | 130/869 [00:01<00:07, 93.70it/s]
1297
  16%|█▌ | 140/869 [00:01<00:07, 94.25it/s]
1298
  17%|█▋ | 150/869 [00:01<00:07, 91.67it/s]
1299
  18%|█▊ | 160/869 [00:01<00:07, 90.44it/s]
1300
  20%|█▉ | 170/869 [00:01<00:07, 88.93it/s]
1301
  21%|██ | 179/869 [00:01<00:07, 88.51it/s]
1302
  22%|██▏ | 189/869 [00:02<00:07, 90.19it/s]
1303
  23%|██▎ | 199/869 [00:02<00:07, 89.37it/s]
1304
  24%|██▍ | 209/869 [00:02<00:07, 90.40it/s]
1305
  25%|██▌ | 219/869 [00:02<00:07, 92.85it/s]
1306
  26%|██▋ | 229/869 [00:02<00:07, 90.28it/s]
1307
  28%|██▊ | 239/869 [00:02<00:07, 87.08it/s]
1308
  29%|██▊ | 248/869 [00:02<00:07, 82.72it/s]
1309
  30%|██▉ | 258/869 [00:02<00:07, 86.16it/s]
1310
  31%|███ | 267/869 [00:02<00:06, 86.93it/s]
1311
  32%|███▏ | 276/869 [00:03<00:06, 87.45it/s]
1312
  33%|███▎ | 285/869 [00:03<00:06, 87.83it/s]
1313
  34%|███▍ | 295/869 [00:03<00:06, 88.99it/s]
1314
  35%|███▍ | 304/869 [00:03<00:06, 87.61it/s]
1315
  36%|███▌ | 313/869 [00:03<00:06, 86.93it/s]
1316
  37%|███▋ | 322/869 [00:03<00:06, 85.96it/s]
1317
  38%|███▊ | 332/869 [00:03<00:06, 88.73it/s]
1318
  39%|███▉ | 341/869 [00:03<00:05, 88.78it/s]
1319
  40%|████ | 350/869 [00:03<00:05, 87.18it/s]
1320
  41%|████▏ | 360/869 [00:04<00:05, 90.49it/s]
1321
  43%|████▎ | 370/869 [00:04<00:05, 92.05it/s]
1322
  44%|████▎ | 380/869 [00:04<00:05, 89.42it/s]
1323
  45%|████▍ | 389/869 [00:04<00:05, 86.57it/s]
1324
  46%|████▌ | 399/869 [00:04<00:05, 89.33it/s]
1325
  47%|████▋ | 409/869 [00:04<00:05, 91.90it/s]
1326
  48%|████▊ | 419/869 [00:04<00:04, 92.49it/s]
1327
  49%|████▉ | 429/869 [00:04<00:04, 92.52it/s]
1328
  51%|█████ | 439/869 [00:04<00:04, 90.46it/s]
1329
  52%|█████▏ | 449/869 [00:04<00:04, 90.02it/s]
1330
  53%|█████▎ | 459/869 [00:05<00:04, 90.68it/s]
1331
  54%|█████▍ | 469/869 [00:05<00:04, 91.56it/s]
1332
  55%|█████▌ | 480/869 [00:05<00:04, 94.03it/s]
1333
  56%|█████▋ | 490/869 [00:05<00:04, 91.51it/s]
1334
  58%|█████▊ | 500/869 [00:05<00:03, 92.57it/s]
1335
  59%|█████▊ | 510/869 [00:05<00:03, 90.78it/s]
1336
  60%|█████▉ | 520/869 [00:05<00:03, 93.29it/s]
1337
  61%|██████ | 530/869 [00:05<00:03, 88.69it/s]
1338
  62%|██████▏ | 539/869 [00:05<00:03, 88.40it/s]
1339
  63%|██████▎ | 549/869 [00:06<00:03, 90.30it/s]
1340
  64%|██████▍ | 559/869 [00:06<00:03, 90.75it/s]
1341
  65%|██████▌ | 569/869 [00:06<00:03, 90.68it/s]
1342
  67%|██████▋ | 579/869 [00:06<00:03, 92.01it/s]
1343
  68%|██████▊ | 589/869 [00:06<00:03, 90.49it/s]
1344
  69%|██████▉ | 599/869 [00:06<00:02, 92.77it/s]
1345
  70%|███████ | 609/869 [00:06<00:02, 93.32it/s]
1346
  71%|███████ | 619/869 [00:06<00:02, 92.00it/s]
1347
  72%|███████▏ | 629/869 [00:06<00:02, 92.91it/s]
1348
  74%|███████▎ | 639/869 [00:07<00:02, 91.85it/s]
1349
  75%|███████▍ | 649/869 [00:07<00:02, 93.27it/s]
1350
  76%|███████▌ | 659/869 [00:07<00:02, 92.46it/s]
1351
  77%|███████▋ | 670/869 [00:07<00:02, 94.83it/s]
1352
  78%|███████▊ | 680/869 [00:07<00:01, 95.72it/s]
1353
  79%|███████▉ | 690/869 [00:07<00:02, 88.88it/s]
1354
  81%|████████ | 700/869 [00:07<00:01, 90.68it/s]
1355
  82%|████████▏ | 710/869 [00:07<00:01, 91.37it/s]
1356
  83%|████████▎ | 720/869 [00:07<00:01, 90.58it/s]
1357
  84%|████████▍ | 730/869 [00:08<00:01, 92.01it/s]
1358
  85%|████████▌ | 740/869 [00:08<00:01, 91.19it/s]
1359
  86%|████████▋ | 750/869 [00:08<00:01, 91.65it/s]
1360
  87%|████████▋ | 760/869 [00:08<00:01, 92.57it/s]
1361
  89%|████████▊ | 770/869 [00:08<00:01, 90.79it/s]
1362
  90%|████████▉ | 780/869 [00:08<00:01, 85.70it/s]
1363
  91%|█████████ | 790/869 [00:08<00:00, 89.02it/s]
1364
  92%|█████████▏| 800/869 [00:08<00:00, 90.94it/s]
1365
  93%|█████████▎| 810/869 [00:08<00:00, 92.20it/s]
1366
  94%|█████████▍| 820/869 [00:09<00:00, 92.22it/s]
1367
  96%|█████████▌| 830/869 [00:09<00:00, 93.70it/s]
1368
  97%|█████████▋| 840/869 [00:09<00:00, 93.56it/s]
1369
  98%|█████████▊| 850/869 [00:09<00:00, 95.06it/s]
1370
  99%|█████████▉| 860/869 [00:09<00:00, 92.13it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
  0%| | 0/1840 [00:00<?, ?it/s]
1372
  1%| | 11/1840 [00:00<00:18, 100.66it/s]
1373
  1%| | 22/1840 [00:00<00:20, 87.32it/s]
1374
  2%|▏ | 32/1840 [00:00<00:20, 89.81it/s]
1375
  2%|▏ | 42/1840 [00:00<00:19, 91.46it/s]
1376
  3%|▎ | 52/1840 [00:00<00:19, 92.87it/s]
1377
  3%|▎ | 62/1840 [00:00<00:19, 90.69it/s]
1378
  4%|▍ | 72/1840 [00:00<00:19, 91.57it/s]
1379
  4%|▍ | 82/1840 [00:00<00:18, 92.80it/s]
1380
  5%|▌ | 92/1840 [00:01<00:19, 91.99it/s]
1381
  6%|▌ | 102/1840 [00:01<00:18, 93.57it/s]
1382
  6%|▌ | 112/1840 [00:01<00:18, 93.70it/s]
1383
  7%|▋ | 122/1840 [00:01<00:18, 92.44it/s]
1384
  7%|▋ | 132/1840 [00:01<00:18, 91.33it/s]
1385
  8%|▊ | 142/1840 [00:01<00:18, 91.08it/s]
1386
  8%|▊ | 152/1840 [00:01<00:18, 92.76it/s]
1387
  9%|▉ | 162/1840 [00:01<00:18, 89.12it/s]
1388
  9%|▉ | 172/1840 [00:01<00:18, 91.00it/s]
1389
  10%|▉ | 182/1840 [00:01<00:17, 93.30it/s]
1390
  10%|█ | 192/1840 [00:02<00:17, 93.99it/s]
1391
  11%|█ | 202/1840 [00:02<00:17, 92.71it/s]
1392
  12%|█▏ | 212/1840 [00:02<00:17, 92.90it/s]
1393
  12%|█▏ | 222/1840 [00:02<00:17, 93.02it/s]
1394
  13%|█▎ | 232/1840 [00:02<00:17, 90.92it/s]
1395
  13%|█▎ | 242/1840 [00:02<00:17, 89.04it/s]
1396
  14%|█▎ | 251/1840 [00:02<00:17, 89.29it/s]
1397
  14%|█▍ | 261/1840 [00:02<00:17, 90.53it/s]
1398
  15%|█▍ | 271/1840 [00:02<00:17, 92.01it/s]
1399
  15%|█▌ | 282/1840 [00:03<00:16, 94.95it/s]
1400
  16%|█▌ | 292/1840 [00:03<00:16, 94.44it/s]
1401
  16%|█▋ | 302/1840 [00:03<00:16, 95.06it/s]
1402
  17%|█▋ | 312/1840 [00:03<00:16, 94.21it/s]
1403
  18%|█▊ | 322/1840 [00:03<00:16, 94.83it/s]
1404
  18%|█▊ | 332/1840 [00:03<00:15, 95.15it/s]
1405
  19%|█▊ | 343/1840 [00:03<00:15, 96.70it/s]
1406
  19%|█▉ | 353/1840 [00:03<00:15, 93.88it/s]
1407
  20%|█▉ | 363/1840 [00:03<00:15, 94.46it/s]
1408
  20%|██ | 374/1840 [00:04<00:15, 96.46it/s]
1409
  21%|██ | 384/1840 [00:04<00:15, 96.58it/s]
1410
  21%|██▏ | 394/1840 [00:04<00:15, 94.52it/s]
1411
  22%|██▏ | 404/1840 [00:04<00:15, 93.54it/s]
1412
  22%|██▎ | 414/1840 [00:04<00:15, 91.33it/s]
1413
  23%|██▎ | 424/1840 [00:04<00:15, 90.95it/s]
1414
  24%|██▎ | 434/1840 [00:04<00:15, 90.46it/s]
1415
  24%|██▍ | 444/1840 [00:04<00:15, 92.37it/s]
1416
  25%|██▍ | 454/1840 [00:04<00:14, 92.51it/s]
1417
  25%|██▌ | 464/1840 [00:05<00:14, 93.47it/s]
1418
  26%|██▌ | 474/1840 [00:05<00:14, 92.31it/s]
1419
  26%|██▋ | 484/1840 [00:05<00:14, 90.63it/s]
1420
  27%|██▋ | 494/1840 [00:05<00:14, 90.70it/s]
1421
  27%|██▋ | 504/1840 [00:05<00:14, 91.02it/s]
1422
  28%|██▊ | 514/1840 [00:05<00:14, 93.08it/s]
1423
  28%|██▊ | 524/1840 [00:05<00:13, 94.07it/s]
1424
  29%|██▉ | 534/1840 [00:05<00:13, 94.78it/s]
1425
  30%|██▉ | 544/1840 [00:05<00:13, 93.68it/s]
1426
  30%|███ | 554/1840 [00:05<00:13, 94.96it/s]
1427
  31%|███ | 564/1840 [00:06<00:13, 94.31it/s]
1428
  31%|███ | 574/1840 [00:06<00:13, 95.70it/s]
1429
  32%|███▏ | 584/1840 [00:06<00:13, 96.46it/s]
1430
  32%|███▏ | 594/1840 [00:06<00:13, 93.35it/s]
1431
  33%|███▎ | 604/1840 [00:06<00:13, 91.14it/s]
1432
  33%|███▎ | 614/1840 [00:06<00:13, 92.08it/s]
1433
  34%|███▍ | 624/1840 [00:06<00:13, 90.07it/s]
1434
  34%|███▍ | 634/1840 [00:06<00:13, 92.36it/s]
1435
  35%|███▌ | 644/1840 [00:06<00:12, 94.27it/s]
1436
  36%|███▌ | 654/1840 [00:07<00:12, 95.15it/s]
1437
  36%|███▌ | 664/1840 [00:07<00:12, 91.92it/s]
1438
  37%|███▋ | 675/1840 [00:07<00:12, 94.52it/s]
1439
  37%|███▋ | 685/1840 [00:07<00:12, 93.52it/s]
1440
  38%|███▊ | 695/1840 [00:07<00:12, 94.01it/s]
1441
  38%|███▊ | 705/1840 [00:07<00:11, 95.00it/s]
1442
  39%|███▉ | 715/1840 [00:07<00:11, 95.08it/s]
1443
  39%|███▉ | 726/1840 [00:07<00:11, 97.47it/s]
1444
  40%|████ | 737/1840 [00:07<00:11, 98.74it/s]
1445
  41%|████ | 747/1840 [00:08<00:11, 97.58it/s]
1446
  41%|████ | 758/1840 [00:08<00:10, 99.05it/s]
1447
  42%|████▏ | 768/1840 [00:08<00:10, 98.35it/s]
1448
  42%|████▏ | 778/1840 [00:08<00:10, 97.78it/s]
1449
  43%|████▎ | 788/1840 [00:08<00:10, 96.12it/s]
1450
  43%|████▎ | 798/1840 [00:08<00:10, 96.37it/s]
1451
  44%|████▍ | 808/1840 [00:08<00:10, 94.99it/s]
1452
  44%|████▍ | 818/1840 [00:08<00:10, 95.70it/s]
1453
  45%|████▌ | 828/1840 [00:08<00:10, 95.46it/s]
1454
  46%|████▌ | 838/1840 [00:08<00:10, 96.12it/s]
1455
  46%|████▌ | 848/1840 [00:09<00:10, 94.62it/s]
1456
  47%|████▋ | 859/1840 [00:09<00:10, 96.32it/s]
1457
  47%|████▋ | 869/1840 [00:09<00:10, 96.37it/s]
1458
  48%|████▊ | 879/1840 [00:09<00:10, 94.02it/s]
1459
  48%|████▊ | 889/1840 [00:09<00:10, 93.01it/s]
1460
  49%|████▉ | 899/1840 [00:09<00:10, 93.14it/s]
1461
  49%|████▉ | 910/1840 [00:09<00:09, 95.61it/s]
1462
  50%|█████ | 920/1840 [00:09<00:09, 96.63it/s]
1463
  51%|█████ | 930/1840 [00:09<00:09, 96.96it/s]
1464
  51%|█████ | 940/1840 [00:10<00:09, 94.21it/s]
1465
  52%|█████▏ | 950/1840 [00:10<00:09, 91.67it/s]
1466
  52%|█████▏ | 960/1840 [00:10<00:10, 86.59it/s]
1467
  53%|█████▎ | 970/1840 [00:10<00:09, 89.43it/s]
1468
  53%|█████▎ | 980/1840 [00:10<00:09, 91.22it/s]
1469
  54%|█████▍ | 990/1840 [00:10<00:09, 92.21it/s]
1470
  54%|█████▍ | 1000/1840 [00:10<00:09, 92.68it/s]
1471
  55%|█████▍ | 1010/1840 [00:10<00:08, 93.86it/s]
1472
  55%|█████▌ | 1020/1840 [00:10<00:08, 95.17it/s]
1473
  56%|█████▌ | 1031/1840 [00:11<00:08, 96.74it/s]
1474
  57%|█████▋ | 1041/1840 [00:11<00:08, 94.91it/s]
1475
  57%|█████▋ | 1051/1840 [00:11<00:08, 95.37it/s]
1476
  58%|█████▊ | 1061/1840 [00:11<00:08, 94.87it/s]
1477
  58%|█████▊ | 1071/1840 [00:11<00:08, 95.93it/s]
1478
  59%|█████▉ | 1082/1840 [00:11<00:07, 97.63it/s]
1479
  59%|█████▉ | 1092/1840 [00:11<00:07, 96.67it/s]
1480
  60%|█████▉ | 1102/1840 [00:11<00:07, 95.77it/s]
1481
  60%|██████ | 1112/1840 [00:11<00:07, 95.81it/s]
1482
  61%|██████ | 1122/1840 [00:11<00:07, 95.09it/s]
1483
  62%|██████▏ | 1132/1840 [00:12<00:07, 94.79it/s]
1484
  62%|██████▏ | 1142/1840 [00:12<00:07, 94.93it/s]
1485
  63%|██████▎ | 1152/1840 [00:12<00:07, 95.37it/s]
1486
  63%|██████▎ | 1162/1840 [00:12<00:07, 95.48it/s]
1487
  64%|██████▎ | 1172/1840 [00:12<00:07, 92.83it/s]
1488
  64%|██████▍ | 1182/1840 [00:12<00:07, 93.70it/s]
1489
  65%|██████▍ | 1192/1840 [00:12<00:07, 91.77it/s]
1490
  65%|██████▌ | 1202/1840 [00:12<00:06, 93.80it/s]
1491
  66%|██████▌ | 1212/1840 [00:12<00:06, 93.86it/s]
1492
  66%|██████▋ | 1222/1840 [00:13<00:06, 92.60it/s]
1493
  67%|██████▋ | 1232/1840 [00:13<00:06, 92.08it/s]
1494
  68%|██████▊ | 1242/1840 [00:13<00:06, 93.89it/s]
1495
  68%|██████▊ | 1252/1840 [00:13<00:06, 94.06it/s]
1496
  69%|██████▊ | 1262/1840 [00:13<00:06, 92.09it/s]
1497
  69%|██████▉ | 1272/1840 [00:13<00:06, 92.27it/s]
1498
  70%|██████▉ | 1282/1840 [00:13<00:06, 92.93it/s]
1499
  70%|███████ | 1292/1840 [00:13<00:05, 93.23it/s]
1500
  71%|███████ | 1302/1840 [00:13<00:05, 94.53it/s]
1501
  71%|███████▏ | 1313/1840 [00:14<00:05, 96.30it/s]
1502
  72%|███████▏ | 1324/1840 [00:14<00:05, 97.65it/s]
1503
  72%|███████▎ | 1334/1840 [00:14<00:05, 96.65it/s]
1504
  73%|███████▎ | 1344/1840 [00:14<00:05, 96.78it/s]
1505
  74%|███████▎ | 1354/1840 [00:14<00:05, 96.36it/s]
1506
  74%|███████▍ | 1364/1840 [00:14<00:04, 96.05it/s]
1507
  75%|███████▍ | 1374/1840 [00:14<00:04, 96.54it/s]
1508
  75%|███████▌ | 1384/1840 [00:14<00:04, 95.78it/s]
1509
  76%|███████▌ | 1394/1840 [00:14<00:04, 96.55it/s]
1510
  76%|███████▋ | 1404/1840 [00:14<00:04, 96.13it/s]
1511
  77%|███████▋ | 1415/1840 [00:15<00:04, 97.23it/s]
1512
  78%|███████▊ | 1426/1840 [00:15<00:04, 98.32it/s]
1513
  78%|███████▊ | 1436/1840 [00:15<00:04, 95.65it/s]
1514
  79%|███████▊ | 1446/1840 [00:15<00:04, 92.20it/s]
1515
  79%|███████▉ | 1456/1840 [00:15<00:04, 92.15it/s]
1516
  80%|███████▉ | 1466/1840 [00:15<00:03, 93.93it/s]
1517
  80%|████████ | 1476/1840 [00:15<00:03, 94.96it/s]
1518
  81%|████████ | 1486/1840 [00:15<00:03, 92.39it/s]
1519
  81%|████████▏ | 1496/1840 [00:15<00:03, 92.62it/s]
1520
  82%|████████▏ | 1506/1840 [00:16<00:03, 90.94it/s]
1521
  82%|████████▏ | 1516/1840 [00:16<00:03, 89.76it/s]
1522
  83%|████████▎ | 1526/1840 [00:16<00:03, 92.31it/s]
1523
  83%|████████▎ | 1536/1840 [00:16<00:03, 91.36it/s]
1524
  84%|████████▍ | 1546/1840 [00:16<00:03, 91.31it/s]
1525
  85%|████████▍ | 1556/1840 [00:16<00:03, 91.22it/s]
1526
  85%|████████▌ | 1566/1840 [00:16<00:03, 90.24it/s]
1527
  86%|████████▌ | 1576/1840 [00:16<00:02, 89.47it/s]
1528
  86%|████████▌ | 1586/1840 [00:16<00:02, 90.91it/s]
1529
  87%|████████▋ | 1596/1840 [00:17<00:02, 91.45it/s]
1530
  87%|████████▋ | 1606/1840 [00:17<00:02, 92.23it/s]
1531
  88%|████████▊ | 1616/1840 [00:17<00:02, 93.15it/s]
1532
  88%|████████▊ | 1626/1840 [00:17<00:02, 92.75it/s]
1533
  89%|████████▉ | 1636/1840 [00:17<00:02, 86.16it/s]
1534
  89%|████████▉ | 1645/1840 [00:17<00:02, 86.13it/s]
1535
  90%|████████▉ | 1655/1840 [00:17<00:02, 88.10it/s]
1536
  90%|█████████ | 1665/1840 [00:17<00:01, 91.07it/s]
1537
  91%|█████████ | 1675/1840 [00:17<00:01, 91.32it/s]
1538
  92%|█████████▏| 1685/1840 [00:18<00:01, 92.00it/s]
1539
  92%|█████████▏| 1695/1840 [00:18<00:01, 94.04it/s]
1540
  93%|█████████▎| 1705/1840 [00:18<00:01, 92.60it/s]
1541
  93%|█████████▎| 1715/1840 [00:18<00:01, 93.06it/s]
1542
  94%|█████████▍| 1725/1840 [00:18<00:01, 94.15it/s]
1543
  94%|█████████▍| 1735/1840 [00:18<00:01, 91.69it/s]
1544
  95%|█████████▍| 1745/1840 [00:18<00:01, 93.98it/s]
1545
  95%|█████████▌| 1755/1840 [00:18<00:00, 95.51it/s]
1546
  96%|█████████▌| 1765/1840 [00:18<00:00, 96.50it/s]
1547
  96%|█████████▋| 1775/1840 [00:18<00:00, 96.16it/s]
1548
  97%|█████████▋| 1785/1840 [00:19<00:00, 95.98it/s]
1549
  98%|█████████▊| 1795/1840 [00:19<00:00, 96.85it/s]
1550
  98%|█████████▊| 1805/1840 [00:19<00:00, 96.83it/s]
1551
  99%|█████████▊| 1815/1840 [00:19<00:00, 93.07it/s]
1552
  99%|█████████▉| 1825/1840 [00:19<00:00, 94.73it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
  {'eval_loss': 0.00707679707556963, 'eval_precision': 0.924860853432282, 'eval_recall': 0.9291705498602051, 'eval_f1': 0.9270106927010694, 'eval_accuracy': 0.9986534758462869, 'eval_runtime': 13.4189, 'eval_samples_per_second': 517.629, 'eval_steps_per_second': 64.76, 'epoch': 10.0}
1281
  {'train_runtime': 1039.0289, 'train_samples_per_second': 269.165, 'train_steps_per_second': 4.206, 'train_loss': 0.002938754050150616, 'epoch': 10.0}
1282
 
1283
+ ***** train metrics *****
1284
+ epoch = 10.0
1285
+ total_flos = 10385610GF
1286
+ train_loss = 0.0029
1287
+ train_runtime = 0:17:19.02
1288
+ train_samples = 27967
1289
+ train_samples_per_second = 269.165
1290
+ train_steps_per_second = 4.206
1291
+ 09/05/2024 21:04:40 - INFO - __main__ - *** Evaluate ***
1292
+ [INFO|trainer.py:811] 2024-09-05 21:04:40,816 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
1293
+ [INFO|trainer.py:3819] 2024-09-05 21:04:40,819 >>
1294
+ ***** Running Evaluation *****
1295
+ [INFO|trainer.py:3821] 2024-09-05 21:04:40,819 >> Num examples = 6946
1296
+ [INFO|trainer.py:3824] 2024-09-05 21:04:40,819 >> Batch size = 8
1297
+
1298
  0%| | 0/869 [00:00<?, ?it/s]
1299
  1%| | 10/869 [00:00<00:08, 98.30it/s]
1300
  2%|▏ | 20/869 [00:00<00:09, 88.58it/s]
1301
  3%|▎ | 29/869 [00:00<00:09, 88.26it/s]
1302
  4%|▍ | 38/869 [00:00<00:09, 88.48it/s]
1303
  6%|▌ | 48/869 [00:00<00:09, 90.80it/s]
1304
  7%|▋ | 58/869 [00:00<00:08, 91.97it/s]
1305
  8%|▊ | 68/869 [00:00<00:08, 90.67it/s]
1306
  9%|▉ | 78/869 [00:00<00:08, 90.51it/s]
1307
  10%|█ | 89/869 [00:00<00:08, 93.51it/s]
1308
  12%|█▏ | 100/869 [00:01<00:08, 95.79it/s]
1309
  13%|█▎ | 110/869 [00:01<00:08, 94.19it/s]
1310
  14%|█▍ | 120/869 [00:01<00:07, 94.41it/s]
1311
  15%|█▍ | 130/869 [00:01<00:07, 93.70it/s]
1312
  16%|█▌ | 140/869 [00:01<00:07, 94.25it/s]
1313
  17%|█▋ | 150/869 [00:01<00:07, 91.67it/s]
1314
  18%|█▊ | 160/869 [00:01<00:07, 90.44it/s]
1315
  20%|█▉ | 170/869 [00:01<00:07, 88.93it/s]
1316
  21%|██ | 179/869 [00:01<00:07, 88.51it/s]
1317
  22%|██▏ | 189/869 [00:02<00:07, 90.19it/s]
1318
  23%|██▎ | 199/869 [00:02<00:07, 89.37it/s]
1319
  24%|██▍ | 209/869 [00:02<00:07, 90.40it/s]
1320
  25%|██▌ | 219/869 [00:02<00:07, 92.85it/s]
1321
  26%|██▋ | 229/869 [00:02<00:07, 90.28it/s]
1322
  28%|██▊ | 239/869 [00:02<00:07, 87.08it/s]
1323
  29%|██▊ | 248/869 [00:02<00:07, 82.72it/s]
1324
  30%|██▉ | 258/869 [00:02<00:07, 86.16it/s]
1325
  31%|███ | 267/869 [00:02<00:06, 86.93it/s]
1326
  32%|███▏ | 276/869 [00:03<00:06, 87.45it/s]
1327
  33%|███▎ | 285/869 [00:03<00:06, 87.83it/s]
1328
  34%|███▍ | 295/869 [00:03<00:06, 88.99it/s]
1329
  35%|███▍ | 304/869 [00:03<00:06, 87.61it/s]
1330
  36%|███▌ | 313/869 [00:03<00:06, 86.93it/s]
1331
  37%|███▋ | 322/869 [00:03<00:06, 85.96it/s]
1332
  38%|███▊ | 332/869 [00:03<00:06, 88.73it/s]
1333
  39%|███▉ | 341/869 [00:03<00:05, 88.78it/s]
1334
  40%|████ | 350/869 [00:03<00:05, 87.18it/s]
1335
  41%|████▏ | 360/869 [00:04<00:05, 90.49it/s]
1336
  43%|████▎ | 370/869 [00:04<00:05, 92.05it/s]
1337
  44%|████▎ | 380/869 [00:04<00:05, 89.42it/s]
1338
  45%|████▍ | 389/869 [00:04<00:05, 86.57it/s]
1339
  46%|████▌ | 399/869 [00:04<00:05, 89.33it/s]
1340
  47%|████▋ | 409/869 [00:04<00:05, 91.90it/s]
1341
  48%|████▊ | 419/869 [00:04<00:04, 92.49it/s]
1342
  49%|████▉ | 429/869 [00:04<00:04, 92.52it/s]
1343
  51%|█████ | 439/869 [00:04<00:04, 90.46it/s]
1344
  52%|█████▏ | 449/869 [00:04<00:04, 90.02it/s]
1345
  53%|█████▎ | 459/869 [00:05<00:04, 90.68it/s]
1346
  54%|█████▍ | 469/869 [00:05<00:04, 91.56it/s]
1347
  55%|█████▌ | 480/869 [00:05<00:04, 94.03it/s]
1348
  56%|█████▋ | 490/869 [00:05<00:04, 91.51it/s]
1349
  58%|█████▊ | 500/869 [00:05<00:03, 92.57it/s]
1350
  59%|█████▊ | 510/869 [00:05<00:03, 90.78it/s]
1351
  60%|█████▉ | 520/869 [00:05<00:03, 93.29it/s]
1352
  61%|██████ | 530/869 [00:05<00:03, 88.69it/s]
1353
  62%|██████▏ | 539/869 [00:05<00:03, 88.40it/s]
1354
  63%|██████▎ | 549/869 [00:06<00:03, 90.30it/s]
1355
  64%|██████▍ | 559/869 [00:06<00:03, 90.75it/s]
1356
  65%|██████▌ | 569/869 [00:06<00:03, 90.68it/s]
1357
  67%|██████▋ | 579/869 [00:06<00:03, 92.01it/s]
1358
  68%|██████▊ | 589/869 [00:06<00:03, 90.49it/s]
1359
  69%|██████▉ | 599/869 [00:06<00:02, 92.77it/s]
1360
  70%|███████ | 609/869 [00:06<00:02, 93.32it/s]
1361
  71%|███████ | 619/869 [00:06<00:02, 92.00it/s]
1362
  72%|███████▏ | 629/869 [00:06<00:02, 92.91it/s]
1363
  74%|███████▎ | 639/869 [00:07<00:02, 91.85it/s]
1364
  75%|███████▍ | 649/869 [00:07<00:02, 93.27it/s]
1365
  76%|███████▌ | 659/869 [00:07<00:02, 92.46it/s]
1366
  77%|███████▋ | 670/869 [00:07<00:02, 94.83it/s]
1367
  78%|███████▊ | 680/869 [00:07<00:01, 95.72it/s]
1368
  79%|███████▉ | 690/869 [00:07<00:02, 88.88it/s]
1369
  81%|████████ | 700/869 [00:07<00:01, 90.68it/s]
1370
  82%|████████▏ | 710/869 [00:07<00:01, 91.37it/s]
1371
  83%|████████▎ | 720/869 [00:07<00:01, 90.58it/s]
1372
  84%|████████▍ | 730/869 [00:08<00:01, 92.01it/s]
1373
  85%|████████▌ | 740/869 [00:08<00:01, 91.19it/s]
1374
  86%|████████▋ | 750/869 [00:08<00:01, 91.65it/s]
1375
  87%|████████▋ | 760/869 [00:08<00:01, 92.57it/s]
1376
  89%|████████▊ | 770/869 [00:08<00:01, 90.79it/s]
1377
  90%|████████▉ | 780/869 [00:08<00:01, 85.70it/s]
1378
  91%|█████████ | 790/869 [00:08<00:00, 89.02it/s]
1379
  92%|█████████▏| 800/869 [00:08<00:00, 90.94it/s]
1380
  93%|█████████▎| 810/869 [00:08<00:00, 92.20it/s]
1381
  94%|█████████▍| 820/869 [00:09<00:00, 92.22it/s]
1382
  96%|█████████▌| 830/869 [00:09<00:00, 93.70it/s]
1383
  97%|█████████▋| 840/869 [00:09<00:00, 93.56it/s]
1384
  98%|█████████▊| 850/869 [00:09<00:00, 95.06it/s]
1385
  99%|█████████▉| 860/869 [00:09<00:00, 92.13it/s]
1386
+ ***** eval metrics *****
1387
+ epoch = 10.0
1388
+ eval_accuracy = 0.9988
1389
+ eval_f1 = 0.9336
1390
+ eval_loss = 0.0046
1391
+ eval_precision = 0.9298
1392
+ eval_recall = 0.9376
1393
+ eval_runtime = 0:00:13.27
1394
+ eval_samples = 6946
1395
+ eval_samples_per_second = 523.342
1396
+ eval_steps_per_second = 65.474
1397
+ 09/05/2024 21:04:54 - INFO - __main__ - *** Predict ***
1398
+ [INFO|trainer.py:811] 2024-09-05 21:04:54,097 >> The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: id, tokens, ner_tags. If id, tokens, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
1399
+ [INFO|trainer.py:3819] 2024-09-05 21:04:54,099 >>
1400
+ ***** Running Prediction *****
1401
+ [INFO|trainer.py:3821] 2024-09-05 21:04:54,099 >> Num examples = 14715
1402
+ [INFO|trainer.py:3824] 2024-09-05 21:04:54,099 >> Batch size = 8
1403
+
1404
  0%| | 0/1840 [00:00<?, ?it/s]
1405
  1%| | 11/1840 [00:00<00:18, 100.66it/s]
1406
  1%| | 22/1840 [00:00<00:20, 87.32it/s]
1407
  2%|▏ | 32/1840 [00:00<00:20, 89.81it/s]
1408
  2%|▏ | 42/1840 [00:00<00:19, 91.46it/s]
1409
  3%|▎ | 52/1840 [00:00<00:19, 92.87it/s]
1410
  3%|▎ | 62/1840 [00:00<00:19, 90.69it/s]
1411
  4%|▍ | 72/1840 [00:00<00:19, 91.57it/s]
1412
  4%|▍ | 82/1840 [00:00<00:18, 92.80it/s]
1413
  5%|▌ | 92/1840 [00:01<00:19, 91.99it/s]
1414
  6%|▌ | 102/1840 [00:01<00:18, 93.57it/s]
1415
  6%|▌ | 112/1840 [00:01<00:18, 93.70it/s]
1416
  7%|▋ | 122/1840 [00:01<00:18, 92.44it/s]
1417
  7%|▋ | 132/1840 [00:01<00:18, 91.33it/s]
1418
  8%|▊ | 142/1840 [00:01<00:18, 91.08it/s]
1419
  8%|▊ | 152/1840 [00:01<00:18, 92.76it/s]
1420
  9%|▉ | 162/1840 [00:01<00:18, 89.12it/s]
1421
  9%|▉ | 172/1840 [00:01<00:18, 91.00it/s]
1422
  10%|▉ | 182/1840 [00:01<00:17, 93.30it/s]
1423
  10%|█ | 192/1840 [00:02<00:17, 93.99it/s]
1424
  11%|█ | 202/1840 [00:02<00:17, 92.71it/s]
1425
  12%|█▏ | 212/1840 [00:02<00:17, 92.90it/s]
1426
  12%|█▏ | 222/1840 [00:02<00:17, 93.02it/s]
1427
  13%|█▎ | 232/1840 [00:02<00:17, 90.92it/s]
1428
  13%|█▎ | 242/1840 [00:02<00:17, 89.04it/s]
1429
  14%|█▎ | 251/1840 [00:02<00:17, 89.29it/s]
1430
  14%|█▍ | 261/1840 [00:02<00:17, 90.53it/s]
1431
  15%|█▍ | 271/1840 [00:02<00:17, 92.01it/s]
1432
  15%|█▌ | 282/1840 [00:03<00:16, 94.95it/s]
1433
  16%|█▌ | 292/1840 [00:03<00:16, 94.44it/s]
1434
  16%|█▋ | 302/1840 [00:03<00:16, 95.06it/s]
1435
  17%|█▋ | 312/1840 [00:03<00:16, 94.21it/s]
1436
  18%|█▊ | 322/1840 [00:03<00:16, 94.83it/s]
1437
  18%|█▊ | 332/1840 [00:03<00:15, 95.15it/s]
1438
  19%|█▊ | 343/1840 [00:03<00:15, 96.70it/s]
1439
  19%|█▉ | 353/1840 [00:03<00:15, 93.88it/s]
1440
  20%|█▉ | 363/1840 [00:03<00:15, 94.46it/s]
1441
  20%|██ | 374/1840 [00:04<00:15, 96.46it/s]
1442
  21%|██ | 384/1840 [00:04<00:15, 96.58it/s]
1443
  21%|██▏ | 394/1840 [00:04<00:15, 94.52it/s]
1444
  22%|██▏ | 404/1840 [00:04<00:15, 93.54it/s]
1445
  22%|██▎ | 414/1840 [00:04<00:15, 91.33it/s]
1446
  23%|██▎ | 424/1840 [00:04<00:15, 90.95it/s]
1447
  24%|██▎ | 434/1840 [00:04<00:15, 90.46it/s]
1448
  24%|██▍ | 444/1840 [00:04<00:15, 92.37it/s]
1449
  25%|██▍ | 454/1840 [00:04<00:14, 92.51it/s]
1450
  25%|██▌ | 464/1840 [00:05<00:14, 93.47it/s]
1451
  26%|██▌ | 474/1840 [00:05<00:14, 92.31it/s]
1452
  26%|██▋ | 484/1840 [00:05<00:14, 90.63it/s]
1453
  27%|██▋ | 494/1840 [00:05<00:14, 90.70it/s]
1454
  27%|██▋ | 504/1840 [00:05<00:14, 91.02it/s]
1455
  28%|██▊ | 514/1840 [00:05<00:14, 93.08it/s]
1456
  28%|██▊ | 524/1840 [00:05<00:13, 94.07it/s]
1457
  29%|██▉ | 534/1840 [00:05<00:13, 94.78it/s]
1458
  30%|██▉ | 544/1840 [00:05<00:13, 93.68it/s]
1459
  30%|███ | 554/1840 [00:05<00:13, 94.96it/s]
1460
  31%|███ | 564/1840 [00:06<00:13, 94.31it/s]
1461
  31%|███ | 574/1840 [00:06<00:13, 95.70it/s]
1462
  32%|███▏ | 584/1840 [00:06<00:13, 96.46it/s]
1463
  32%|███▏ | 594/1840 [00:06<00:13, 93.35it/s]
1464
  33%|███▎ | 604/1840 [00:06<00:13, 91.14it/s]
1465
  33%|███▎ | 614/1840 [00:06<00:13, 92.08it/s]
1466
  34%|███▍ | 624/1840 [00:06<00:13, 90.07it/s]
1467
  34%|███▍ | 634/1840 [00:06<00:13, 92.36it/s]
1468
  35%|███▌ | 644/1840 [00:06<00:12, 94.27it/s]
1469
  36%|███▌ | 654/1840 [00:07<00:12, 95.15it/s]
1470
  36%|███▌ | 664/1840 [00:07<00:12, 91.92it/s]
1471
  37%|███▋ | 675/1840 [00:07<00:12, 94.52it/s]
1472
  37%|███▋ | 685/1840 [00:07<00:12, 93.52it/s]
1473
  38%|███▊ | 695/1840 [00:07<00:12, 94.01it/s]
1474
  38%|███▊ | 705/1840 [00:07<00:11, 95.00it/s]
1475
  39%|███▉ | 715/1840 [00:07<00:11, 95.08it/s]
1476
  39%|███▉ | 726/1840 [00:07<00:11, 97.47it/s]
1477
  40%|████ | 737/1840 [00:07<00:11, 98.74it/s]
1478
  41%|████ | 747/1840 [00:08<00:11, 97.58it/s]
1479
  41%|████ | 758/1840 [00:08<00:10, 99.05it/s]
1480
  42%|████▏ | 768/1840 [00:08<00:10, 98.35it/s]
1481
  42%|████▏ | 778/1840 [00:08<00:10, 97.78it/s]
1482
  43%|████▎ | 788/1840 [00:08<00:10, 96.12it/s]
1483
  43%|████▎ | 798/1840 [00:08<00:10, 96.37it/s]
1484
  44%|████▍ | 808/1840 [00:08<00:10, 94.99it/s]
1485
  44%|████▍ | 818/1840 [00:08<00:10, 95.70it/s]
1486
  45%|████▌ | 828/1840 [00:08<00:10, 95.46it/s]
1487
  46%|████▌ | 838/1840 [00:08<00:10, 96.12it/s]
1488
  46%|████▌ | 848/1840 [00:09<00:10, 94.62it/s]
1489
  47%|████▋ | 859/1840 [00:09<00:10, 96.32it/s]
1490
  47%|████▋ | 869/1840 [00:09<00:10, 96.37it/s]
1491
  48%|████▊ | 879/1840 [00:09<00:10, 94.02it/s]
1492
  48%|████▊ | 889/1840 [00:09<00:10, 93.01it/s]
1493
  49%|████▉ | 899/1840 [00:09<00:10, 93.14it/s]
1494
  49%|████▉ | 910/1840 [00:09<00:09, 95.61it/s]
1495
  50%|█████ | 920/1840 [00:09<00:09, 96.63it/s]
1496
  51%|█████ | 930/1840 [00:09<00:09, 96.96it/s]
1497
  51%|█████ | 940/1840 [00:10<00:09, 94.21it/s]
1498
  52%|█████▏ | 950/1840 [00:10<00:09, 91.67it/s]
1499
  52%|█████▏ | 960/1840 [00:10<00:10, 86.59it/s]
1500
  53%|█████▎ | 970/1840 [00:10<00:09, 89.43it/s]
1501
  53%|█████▎ | 980/1840 [00:10<00:09, 91.22it/s]
1502
  54%|█████▍ | 990/1840 [00:10<00:09, 92.21it/s]
1503
  54%|█████▍ | 1000/1840 [00:10<00:09, 92.68it/s]
1504
  55%|█████▍ | 1010/1840 [00:10<00:08, 93.86it/s]
1505
  55%|█████▌ | 1020/1840 [00:10<00:08, 95.17it/s]
1506
  56%|█████▌ | 1031/1840 [00:11<00:08, 96.74it/s]
1507
  57%|█████▋ | 1041/1840 [00:11<00:08, 94.91it/s]
1508
  57%|█████▋ | 1051/1840 [00:11<00:08, 95.37it/s]
1509
  58%|█████▊ | 1061/1840 [00:11<00:08, 94.87it/s]
1510
  58%|█████▊ | 1071/1840 [00:11<00:08, 95.93it/s]
1511
  59%|█████▉ | 1082/1840 [00:11<00:07, 97.63it/s]
1512
  59%|█████▉ | 1092/1840 [00:11<00:07, 96.67it/s]
1513
  60%|█████▉ | 1102/1840 [00:11<00:07, 95.77it/s]
1514
  60%|██████ | 1112/1840 [00:11<00:07, 95.81it/s]
1515
  61%|██████ | 1122/1840 [00:11<00:07, 95.09it/s]
1516
  62%|██████▏ | 1132/1840 [00:12<00:07, 94.79it/s]
1517
  62%|██████▏ | 1142/1840 [00:12<00:07, 94.93it/s]
1518
  63%|██████▎ | 1152/1840 [00:12<00:07, 95.37it/s]
1519
  63%|██████▎ | 1162/1840 [00:12<00:07, 95.48it/s]
1520
  64%|██████▎ | 1172/1840 [00:12<00:07, 92.83it/s]
1521
  64%|██████▍ | 1182/1840 [00:12<00:07, 93.70it/s]
1522
  65%|██████▍ | 1192/1840 [00:12<00:07, 91.77it/s]
1523
  65%|██████▌ | 1202/1840 [00:12<00:06, 93.80it/s]
1524
  66%|██████▌ | 1212/1840 [00:12<00:06, 93.86it/s]
1525
  66%|██████▋ | 1222/1840 [00:13<00:06, 92.60it/s]
1526
  67%|██████▋ | 1232/1840 [00:13<00:06, 92.08it/s]
1527
  68%|██████▊ | 1242/1840 [00:13<00:06, 93.89it/s]
1528
  68%|██████▊ | 1252/1840 [00:13<00:06, 94.06it/s]
1529
  69%|██████▊ | 1262/1840 [00:13<00:06, 92.09it/s]
1530
  69%|██████▉ | 1272/1840 [00:13<00:06, 92.27it/s]
1531
  70%|██████▉ | 1282/1840 [00:13<00:06, 92.93it/s]
1532
  70%|███████ | 1292/1840 [00:13<00:05, 93.23it/s]
1533
  71%|███████ | 1302/1840 [00:13<00:05, 94.53it/s]
1534
  71%|███████▏ | 1313/1840 [00:14<00:05, 96.30it/s]
1535
  72%|███████▏ | 1324/1840 [00:14<00:05, 97.65it/s]
1536
  72%|███████▎ | 1334/1840 [00:14<00:05, 96.65it/s]
1537
  73%|███████▎ | 1344/1840 [00:14<00:05, 96.78it/s]
1538
  74%|███████▎ | 1354/1840 [00:14<00:05, 96.36it/s]
1539
  74%|███████▍ | 1364/1840 [00:14<00:04, 96.05it/s]
1540
  75%|███████▍ | 1374/1840 [00:14<00:04, 96.54it/s]
1541
  75%|███████▌ | 1384/1840 [00:14<00:04, 95.78it/s]
1542
  76%|███████▌ | 1394/1840 [00:14<00:04, 96.55it/s]
1543
  76%|███████▋ | 1404/1840 [00:14<00:04, 96.13it/s]
1544
  77%|███████▋ | 1415/1840 [00:15<00:04, 97.23it/s]
1545
  78%|███████▊ | 1426/1840 [00:15<00:04, 98.32it/s]
1546
  78%|███████▊ | 1436/1840 [00:15<00:04, 95.65it/s]
1547
  79%|███████▊ | 1446/1840 [00:15<00:04, 92.20it/s]
1548
  79%|███████▉ | 1456/1840 [00:15<00:04, 92.15it/s]
1549
  80%|███████▉ | 1466/1840 [00:15<00:03, 93.93it/s]
1550
  80%|████████ | 1476/1840 [00:15<00:03, 94.96it/s]
1551
  81%|████████ | 1486/1840 [00:15<00:03, 92.39it/s]
1552
  81%|████████▏ | 1496/1840 [00:15<00:03, 92.62it/s]
1553
  82%|████████▏ | 1506/1840 [00:16<00:03, 90.94it/s]
1554
  82%|████████▏ | 1516/1840 [00:16<00:03, 89.76it/s]
1555
  83%|████████▎ | 1526/1840 [00:16<00:03, 92.31it/s]
1556
  83%|████████▎ | 1536/1840 [00:16<00:03, 91.36it/s]
1557
  84%|████████▍ | 1546/1840 [00:16<00:03, 91.31it/s]
1558
  85%|████████▍ | 1556/1840 [00:16<00:03, 91.22it/s]
1559
  85%|████████▌ | 1566/1840 [00:16<00:03, 90.24it/s]
1560
  86%|████████▌ | 1576/1840 [00:16<00:02, 89.47it/s]
1561
  86%|████████▌ | 1586/1840 [00:16<00:02, 90.91it/s]
1562
  87%|████████▋ | 1596/1840 [00:17<00:02, 91.45it/s]
1563
  87%|████████▋ | 1606/1840 [00:17<00:02, 92.23it/s]
1564
  88%|████████▊ | 1616/1840 [00:17<00:02, 93.15it/s]
1565
  88%|████████▊ | 1626/1840 [00:17<00:02, 92.75it/s]
1566
  89%|████████▉ | 1636/1840 [00:17<00:02, 86.16it/s]
1567
  89%|████████▉ | 1645/1840 [00:17<00:02, 86.13it/s]
1568
  90%|████████▉ | 1655/1840 [00:17<00:02, 88.10it/s]
1569
  90%|█████████ | 1665/1840 [00:17<00:01, 91.07it/s]
1570
  91%|█████████ | 1675/1840 [00:17<00:01, 91.32it/s]
1571
  92%|█████████▏| 1685/1840 [00:18<00:01, 92.00it/s]
1572
  92%|█████████▏| 1695/1840 [00:18<00:01, 94.04it/s]
1573
  93%|█████████▎| 1705/1840 [00:18<00:01, 92.60it/s]
1574
  93%|█████████▎| 1715/1840 [00:18<00:01, 93.06it/s]
1575
  94%|█████████▍| 1725/1840 [00:18<00:01, 94.15it/s]
1576
  94%|█████████▍| 1735/1840 [00:18<00:01, 91.69it/s]
1577
  95%|█████████▍| 1745/1840 [00:18<00:01, 93.98it/s]
1578
  95%|█████████▌| 1755/1840 [00:18<00:00, 95.51it/s]
1579
  96%|█████████▌| 1765/1840 [00:18<00:00, 96.50it/s]
1580
  96%|█████████▋| 1775/1840 [00:18<00:00, 96.16it/s]
1581
  97%|█████████▋| 1785/1840 [00:19<00:00, 95.98it/s]
1582
  98%|█████████▊| 1795/1840 [00:19<00:00, 96.85it/s]
1583
  98%|█████████▊| 1805/1840 [00:19<00:00, 96.83it/s]
1584
  99%|█████████▊| 1815/1840 [00:19<00:00, 93.07it/s]
1585
  99%|█████████▉| 1825/1840 [00:19<00:00, 94.73it/s]
1586
+ [INFO|trainer.py:3503] 2024-09-05 21:05:20,650 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1587
+ [INFO|configuration_utils.py:472] 2024-09-05 21:05:20,652 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1588
+ [INFO|modeling_utils.py:2799] 2024-09-05 21:05:21,937 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1589
+ [INFO|tokenization_utils_base.py:2684] 2024-09-05 21:05:21,938 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1590
+ [INFO|tokenization_utils_base.py:2693] 2024-09-05 21:05:21,939 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1591
+ ***** predict metrics *****
1592
+ predict_accuracy = 0.9987
1593
+ predict_f1 = 0.9206
1594
+ predict_loss = 0.005
1595
+ predict_precision = 0.8939
1596
+ predict_recall = 0.9489
1597
+ predict_runtime = 0:00:25.75
1598
+ predict_samples_per_second = 571.412
1599
+ predict_steps_per_second = 71.451
1600
+
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 10.0,
3
+ "total_flos": 1.1151464037050934e+16,
4
+ "train_loss": 0.002938754050150616,
5
+ "train_runtime": 1039.0289,
6
+ "train_samples": 27967,
7
+ "train_samples_per_second": 269.165,
8
+ "train_steps_per_second": 4.206
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9336426914153132,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-1311",
4
+ "epoch": 10.0,
5
+ "eval_steps": 500,
6
+ "global_step": 4370,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 1.0,
13
+ "eval_accuracy": 0.9984720788100354,
14
+ "eval_f1": 0.9122645842903078,
15
+ "eval_loss": 0.004654619377106428,
16
+ "eval_precision": 0.8994565217391305,
17
+ "eval_recall": 0.9254426840633737,
18
+ "eval_runtime": 13.3719,
19
+ "eval_samples_per_second": 519.448,
20
+ "eval_steps_per_second": 64.987,
21
+ "step": 437
22
+ },
23
+ {
24
+ "epoch": 1.1441647597254005,
25
+ "grad_norm": 0.35407835245132446,
26
+ "learning_rate": 4.4279176201373e-05,
27
+ "loss": 0.0144,
28
+ "step": 500
29
+ },
30
+ {
31
+ "epoch": 2.0,
32
+ "eval_accuracy": 0.9984511483827756,
33
+ "eval_f1": 0.9131627056672761,
34
+ "eval_loss": 0.005305842496454716,
35
+ "eval_precision": 0.8959641255605382,
36
+ "eval_recall": 0.9310344827586207,
37
+ "eval_runtime": 13.2738,
38
+ "eval_samples_per_second": 523.286,
39
+ "eval_steps_per_second": 65.467,
40
+ "step": 874
41
+ },
42
+ {
43
+ "epoch": 2.288329519450801,
44
+ "grad_norm": 0.008026196621358395,
45
+ "learning_rate": 3.8558352402745995e-05,
46
+ "loss": 0.0038,
47
+ "step": 1000
48
+ },
49
+ {
50
+ "epoch": 3.0,
51
+ "eval_accuracy": 0.9987999888371054,
52
+ "eval_f1": 0.9336426914153132,
53
+ "eval_loss": 0.004605981521308422,
54
+ "eval_precision": 0.9297597042513863,
55
+ "eval_recall": 0.9375582479030755,
56
+ "eval_runtime": 13.2443,
57
+ "eval_samples_per_second": 524.45,
58
+ "eval_steps_per_second": 65.613,
59
+ "step": 1311
60
+ },
61
+ {
62
+ "epoch": 3.4324942791762014,
63
+ "grad_norm": 0.13839516043663025,
64
+ "learning_rate": 3.2837528604119e-05,
65
+ "loss": 0.0022,
66
+ "step": 1500
67
+ },
68
+ {
69
+ "epoch": 4.0,
70
+ "eval_accuracy": 0.9985627773281612,
71
+ "eval_f1": 0.9223616922361693,
72
+ "eval_loss": 0.005482749082148075,
73
+ "eval_precision": 0.9202226345083488,
74
+ "eval_recall": 0.9245107176141659,
75
+ "eval_runtime": 13.4564,
76
+ "eval_samples_per_second": 516.186,
77
+ "eval_steps_per_second": 64.579,
78
+ "step": 1748
79
+ },
80
+ {
81
+ "epoch": 4.576659038901602,
82
+ "grad_norm": 0.01504958514124155,
83
+ "learning_rate": 2.7116704805491993e-05,
84
+ "loss": 0.0019,
85
+ "step": 2000
86
+ },
87
+ {
88
+ "epoch": 5.0,
89
+ "eval_accuracy": 0.9985627773281612,
90
+ "eval_f1": 0.9231477220432582,
91
+ "eval_loss": 0.005268561653792858,
92
+ "eval_precision": 0.9118181818181819,
93
+ "eval_recall": 0.934762348555452,
94
+ "eval_runtime": 13.2814,
95
+ "eval_samples_per_second": 522.986,
96
+ "eval_steps_per_second": 65.43,
97
+ "step": 2185
98
+ },
99
+ {
100
+ "epoch": 5.720823798627002,
101
+ "grad_norm": 0.11815565079450607,
102
+ "learning_rate": 2.139588100686499e-05,
103
+ "loss": 0.0014,
104
+ "step": 2500
105
+ },
106
+ {
107
+ "epoch": 6.0,
108
+ "eval_accuracy": 0.998618591800854,
109
+ "eval_f1": 0.92243381328379,
110
+ "eval_loss": 0.005419280380010605,
111
+ "eval_precision": 0.9194444444444444,
112
+ "eval_recall": 0.9254426840633737,
113
+ "eval_runtime": 13.1103,
114
+ "eval_samples_per_second": 529.811,
115
+ "eval_steps_per_second": 66.284,
116
+ "step": 2622
117
+ },
118
+ {
119
+ "epoch": 6.864988558352403,
120
+ "grad_norm": 0.012974879704415798,
121
+ "learning_rate": 1.5675057208237986e-05,
122
+ "loss": 0.0009,
123
+ "step": 3000
124
+ },
125
+ {
126
+ "epoch": 7.0,
127
+ "eval_accuracy": 0.9986255686099406,
128
+ "eval_f1": 0.9289055191768008,
129
+ "eval_loss": 0.007274709176272154,
130
+ "eval_precision": 0.9323943661971831,
131
+ "eval_recall": 0.9254426840633737,
132
+ "eval_runtime": 13.1693,
133
+ "eval_samples_per_second": 527.439,
134
+ "eval_steps_per_second": 65.987,
135
+ "step": 3059
136
+ },
137
+ {
138
+ "epoch": 8.0,
139
+ "eval_accuracy": 0.9986604526553735,
140
+ "eval_f1": 0.9297752808988765,
141
+ "eval_loss": 0.006545887794345617,
142
+ "eval_precision": 0.9341486359360301,
143
+ "eval_recall": 0.9254426840633737,
144
+ "eval_runtime": 13.1956,
145
+ "eval_samples_per_second": 526.386,
146
+ "eval_steps_per_second": 65.855,
147
+ "step": 3496
148
+ },
149
+ {
150
+ "epoch": 8.009153318077804,
151
+ "grad_norm": 0.0015736627392470837,
152
+ "learning_rate": 9.954233409610985e-06,
153
+ "loss": 0.0005,
154
+ "step": 3500
155
+ },
156
+ {
157
+ "epoch": 9.0,
158
+ "eval_accuracy": 0.9986674294644602,
159
+ "eval_f1": 0.930905695611578,
160
+ "eval_loss": 0.006908744107931852,
161
+ "eval_precision": 0.9326473339569691,
162
+ "eval_recall": 0.9291705498602051,
163
+ "eval_runtime": 13.5052,
164
+ "eval_samples_per_second": 514.321,
165
+ "eval_steps_per_second": 64.346,
166
+ "step": 3933
167
+ },
168
+ {
169
+ "epoch": 9.153318077803204,
170
+ "grad_norm": 0.0005491800257004797,
171
+ "learning_rate": 4.233409610983982e-06,
172
+ "loss": 0.0004,
173
+ "step": 4000
174
+ },
175
+ {
176
+ "epoch": 10.0,
177
+ "eval_accuracy": 0.9986534758462869,
178
+ "eval_f1": 0.9270106927010694,
179
+ "eval_loss": 0.00707679707556963,
180
+ "eval_precision": 0.924860853432282,
181
+ "eval_recall": 0.9291705498602051,
182
+ "eval_runtime": 13.4189,
183
+ "eval_samples_per_second": 517.629,
184
+ "eval_steps_per_second": 64.76,
185
+ "step": 4370
186
+ },
187
+ {
188
+ "epoch": 10.0,
189
+ "step": 4370,
190
+ "total_flos": 1.1151464037050934e+16,
191
+ "train_loss": 0.002938754050150616,
192
+ "train_runtime": 1039.0289,
193
+ "train_samples_per_second": 269.165,
194
+ "train_steps_per_second": 4.206
195
+ }
196
+ ],
197
+ "logging_steps": 500,
198
+ "max_steps": 4370,
199
+ "num_input_tokens_seen": 0,
200
+ "num_train_epochs": 10,
201
+ "save_steps": 500,
202
+ "stateful_callbacks": {
203
+ "TrainerControl": {
204
+ "args": {
205
+ "should_epoch_stop": false,
206
+ "should_evaluate": false,
207
+ "should_log": false,
208
+ "should_save": true,
209
+ "should_training_stop": true
210
+ },
211
+ "attributes": {}
212
+ }
213
+ },
214
+ "total_flos": 1.1151464037050934e+16,
215
+ "train_batch_size": 32,
216
+ "trial_name": null,
217
+ "trial_params": null
218
+ }