Rodrigo1771
commited on
Commit
•
e85d1ad
1
Parent(s):
aaf5794
End of training
Browse files- README.md +14 -13
- all_results.json +19 -19
- eval_results.json +8 -8
- predict_results.json +8 -8
- tb/events.out.tfevents.1725582923.2a66098fac87.23851.1 +3 -0
- train.log +50 -0
- train_results.json +3 -3
- trainer_state.json +84 -84
README.md
CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
tags:
|
|
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- combined-train-drugtemist-dev-85-ner
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -18,24 +19,24 @@ model-index:
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
-
name: combined-train-drugtemist-dev-85-ner
|
22 |
-
type: combined-train-drugtemist-dev-85-ner
|
23 |
config: CombinedTrainDrugTEMISTDevNER
|
24 |
split: validation
|
25 |
args: CombinedTrainDrugTEMISTDevNER
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -43,13 +44,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# output
|
45 |
|
46 |
-
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the combined-train-drugtemist-dev-85-ner dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 1.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
|
5 |
tags:
|
6 |
+
- token-classification
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
+
- Rodrigo1771/combined-train-drugtemist-dev-85-ner
|
10 |
metrics:
|
11 |
- precision
|
12 |
- recall
|
|
|
19 |
name: Token Classification
|
20 |
type: token-classification
|
21 |
dataset:
|
22 |
+
name: Rodrigo1771/combined-train-drugtemist-dev-85-ner
|
23 |
+
type: Rodrigo1771/combined-train-drugtemist-dev-85-ner
|
24 |
config: CombinedTrainDrugTEMISTDevNER
|
25 |
split: validation
|
26 |
args: CombinedTrainDrugTEMISTDevNER
|
27 |
metrics:
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.09400470929179497
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.9540441176470589
|
34 |
- name: F1
|
35 |
type: f1
|
36 |
+
value: 0.17114591920857378
|
37 |
- name: Accuracy
|
38 |
type: accuracy
|
39 |
+
value: 0.7890274211487498
|
40 |
---
|
41 |
|
42 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
# output
|
46 |
|
47 |
+
This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/combined-train-drugtemist-dev-85-ner dataset.
|
48 |
It achieves the following results on the evaluation set:
|
49 |
+
- Loss: 1.1806
|
50 |
+
- Precision: 0.0940
|
51 |
+
- Recall: 0.9540
|
52 |
+
- F1: 0.1711
|
53 |
+
- Accuracy: 0.7890
|
54 |
|
55 |
## Model description
|
56 |
|
all_results.json
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss":
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime": 14.
|
9 |
"eval_samples": 6810,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
-
"predict_accuracy": 0.
|
13 |
-
"predict_f1": 0.
|
14 |
-
"predict_loss": 0.
|
15 |
-
"predict_precision": 0.
|
16 |
-
"predict_recall": 0.
|
17 |
-
"predict_runtime": 29.
|
18 |
-
"predict_samples_per_second":
|
19 |
-
"predict_steps_per_second":
|
20 |
"total_flos": 1.7176580067661056e+16,
|
21 |
"train_loss": 0.0812657987344287,
|
22 |
-
"train_runtime":
|
23 |
"train_samples": 34604,
|
24 |
-
"train_samples_per_second":
|
25 |
-
"train_steps_per_second": 3.
|
26 |
}
|
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.7890274211487498,
|
4 |
+
"eval_f1": 0.17114591920857378,
|
5 |
+
"eval_loss": 1.1805996894836426,
|
6 |
+
"eval_precision": 0.09400470929179497,
|
7 |
+
"eval_recall": 0.9540441176470589,
|
8 |
+
"eval_runtime": 14.5104,
|
9 |
"eval_samples": 6810,
|
10 |
+
"eval_samples_per_second": 469.318,
|
11 |
+
"eval_steps_per_second": 58.716,
|
12 |
+
"predict_accuracy": 0.8712439909780733,
|
13 |
+
"predict_f1": 0.22974402369367464,
|
14 |
+
"predict_loss": 0.7416015267372131,
|
15 |
+
"predict_precision": 0.130696405648267,
|
16 |
+
"predict_recall": 0.9487478159580663,
|
17 |
+
"predict_runtime": 29.7849,
|
18 |
+
"predict_samples_per_second": 490.651,
|
19 |
+
"predict_steps_per_second": 61.34,
|
20 |
"total_flos": 1.7176580067661056e+16,
|
21 |
"train_loss": 0.0812657987344287,
|
22 |
+
"train_runtime": 1542.5562,
|
23 |
"train_samples": 34604,
|
24 |
+
"train_samples_per_second": 224.329,
|
25 |
+
"train_steps_per_second": 3.507
|
26 |
}
|
eval_results.json
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
-
"eval_accuracy": 0.
|
4 |
-
"eval_f1": 0.
|
5 |
-
"eval_loss":
|
6 |
-
"eval_precision": 0.
|
7 |
-
"eval_recall": 0.
|
8 |
-
"eval_runtime": 14.
|
9 |
"eval_samples": 6810,
|
10 |
-
"eval_samples_per_second":
|
11 |
-
"eval_steps_per_second":
|
12 |
}
|
|
|
1 |
{
|
2 |
"epoch": 10.0,
|
3 |
+
"eval_accuracy": 0.7890274211487498,
|
4 |
+
"eval_f1": 0.17114591920857378,
|
5 |
+
"eval_loss": 1.1805996894836426,
|
6 |
+
"eval_precision": 0.09400470929179497,
|
7 |
+
"eval_recall": 0.9540441176470589,
|
8 |
+
"eval_runtime": 14.5104,
|
9 |
"eval_samples": 6810,
|
10 |
+
"eval_samples_per_second": 469.318,
|
11 |
+
"eval_steps_per_second": 58.716
|
12 |
}
|
predict_results.json
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
{
|
2 |
-
"predict_accuracy": 0.
|
3 |
-
"predict_f1": 0.
|
4 |
-
"predict_loss": 0.
|
5 |
-
"predict_precision": 0.
|
6 |
-
"predict_recall": 0.
|
7 |
-
"predict_runtime": 29.
|
8 |
-
"predict_samples_per_second":
|
9 |
-
"predict_steps_per_second":
|
10 |
}
|
|
|
1 |
{
|
2 |
+
"predict_accuracy": 0.8712439909780733,
|
3 |
+
"predict_f1": 0.22974402369367464,
|
4 |
+
"predict_loss": 0.7416015267372131,
|
5 |
+
"predict_precision": 0.130696405648267,
|
6 |
+
"predict_recall": 0.9487478159580663,
|
7 |
+
"predict_runtime": 29.7849,
|
8 |
+
"predict_samples_per_second": 490.651,
|
9 |
+
"predict_steps_per_second": 61.34
|
10 |
}
|
tb/events.out.tfevents.1725582923.2a66098fac87.23851.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec2dc4fe260f4b1afdfb552850a0337582e07d058a8812069b094e4c853b8cac
|
3 |
+
size 560
|
train.log
CHANGED
@@ -1501,3 +1501,53 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1501 |
{'eval_loss': 1.6103088855743408, 'eval_precision': 0.09223170184104176, 'eval_recall': 0.9439338235294118, 'eval_f1': 0.16804385175488834, 'eval_accuracy': 0.7862743213368668, 'eval_runtime': 14.5612, 'eval_samples_per_second': 467.681, 'eval_steps_per_second': 58.512, 'epoch': 10.0}
|
1502 |
{'train_runtime': 1542.5562, 'train_samples_per_second': 224.329, 'train_steps_per_second': 3.507, 'train_loss': 0.0812657987344287, 'epoch': 10.0}
|
1503 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1504 |
0%| | 0/852 [00:00<?, ?it/s]
|
1505 |
1%| | 10/852 [00:00<00:09, 89.32it/s]
|
1506 |
2%|▏ | 19/852 [00:00<00:10, 77.68it/s]
|
1507 |
3%|▎ | 27/852 [00:00<00:10, 77.19it/s]
|
1508 |
4%|▍ | 35/852 [00:00<00:10, 77.86it/s]
|
1509 |
5%|▌ | 44/852 [00:00<00:10, 79.22it/s]
|
1510 |
6%|▌ | 53/852 [00:00<00:09, 80.49it/s]
|
1511 |
7%|▋ | 62/852 [00:00<00:09, 81.06it/s]
|
1512 |
8%|▊ | 71/852 [00:00<00:09, 78.26it/s]
|
1513 |
9%|▉ | 80/852 [00:01<00:09, 78.24it/s]
|
1514 |
10%|█ | 89/852 [00:01<00:09, 78.87it/s]
|
1515 |
11%|█▏ | 97/852 [00:01<00:09, 78.68it/s]
|
1516 |
12%|█▏ | 106/852 [00:01<00:09, 79.83it/s]
|
1517 |
13%|█▎ | 114/852 [00:01<00:09, 79.66it/s]
|
1518 |
14%|█▍ | 123/852 [00:01<00:09, 80.84it/s]
|
1519 |
15%|█▌ | 132/852 [00:01<00:09, 76.65it/s]
|
1520 |
16%|█▋ | 140/852 [00:01<00:09, 76.74it/s]
|
1521 |
17%|█▋ | 148/852 [00:01<00:09, 76.37it/s]
|
1522 |
18%|█▊ | 156/852 [00:01<00:09, 77.14it/s]
|
1523 |
19%|█▉ | 164/852 [00:02<00:08, 77.82it/s]
|
1524 |
20%|██ | 172/852 [00:02<00:08, 77.95it/s]
|
1525 |
21%|██ | 180/852 [00:02<00:08, 76.88it/s]
|
1526 |
22%|██▏ | 188/852 [00:02<00:08, 77.69it/s]
|
1527 |
23%|██▎ | 196/852 [00:02<00:08, 77.62it/s]
|
1528 |
24%|██▍ | 205/852 [00:02<00:08, 78.72it/s]
|
1529 |
25%|██▌ | 213/852 [00:02<00:08, 77.59it/s]
|
1530 |
26%|██▌ | 221/852 [00:02<00:08, 76.68it/s]
|
1531 |
27%|██▋ | 230/852 [00:02<00:07, 77.89it/s]
|
1532 |
28%|██▊ | 238/852 [00:03<00:07, 77.24it/s]
|
1533 |
29%|██▉ | 246/852 [00:03<00:07, 75.97it/s]
|
1534 |
30%|██▉ | 255/852 [00:03<00:07, 78.31it/s]
|
1535 |
31%|███ | 264/852 [00:03<00:07, 79.83it/s]
|
1536 |
32%|███▏ | 272/852 [00:03<00:07, 79.08it/s]
|
1537 |
33%|███▎ | 281/852 [00:03<00:07, 80.99it/s]
|
1538 |
34%|███▍ | 290/852 [00:03<00:07, 79.72it/s]
|
1539 |
35%|███▍ | 298/852 [00:03<00:06, 79.60it/s]
|
1540 |
36%|███▌ | 307/852 [00:03<00:06, 80.29it/s]
|
1541 |
37%|███▋ | 316/852 [00:04<00:06, 78.10it/s]
|
1542 |
38%|███▊ | 324/852 [00:04<00:06, 78.24it/s]
|
1543 |
39%|███▉ | 332/852 [00:04<00:06, 77.89it/s]
|
1544 |
40%|████ | 341/852 [00:04<00:06, 79.08it/s]
|
1545 |
41%|████ | 350/852 [00:04<00:06, 79.99it/s]
|
1546 |
42%|████▏ | 359/852 [00:04<00:06, 78.18it/s]
|
1547 |
43%|████▎ | 368/852 [00:04<00:06, 79.04it/s]
|
1548 |
44%|████▍ | 377/852 [00:04<00:05, 79.49it/s]
|
1549 |
45%|████▌ | 385/852 [00:04<00:05, 78.76it/s]
|
1550 |
46%|████▌ | 394/852 [00:05<00:05, 79.43it/s]
|
1551 |
47%|████▋ | 402/852 [00:05<00:05, 79.23it/s]
|
1552 |
48%|████▊ | 410/852 [00:05<00:05, 77.00it/s]
|
1553 |
49%|████▉ | 418/852 [00:05<00:05, 77.80it/s]
|
1554 |
50%|█████ | 426/852 [00:05<00:05, 76.10it/s]
|
1555 |
51%|█████ | 435/852 [00:05<00:05, 77.97it/s]
|
1556 |
52%|█████▏ | 444/852 [00:05<00:05, 79.13it/s]
|
1557 |
53%|█████▎ | 453/852 [00:05<00:04, 79.97it/s]
|
1558 |
54%|█████▍ | 461/852 [00:05<00:05, 77.94it/s]
|
1559 |
55%|█████▌ | 469/852 [00:05<00:04, 77.33it/s]
|
1560 |
56%|█████▌ | 477/852 [00:06<00:05, 74.29it/s]
|
1561 |
57%|█████▋ | 485/852 [00:06<00:04, 74.32it/s]
|
1562 |
58%|█████▊ | 494/852 [00:06<00:04, 76.20it/s]
|
1563 |
59%|█████▉ | 503/852 [00:06<00:04, 77.78it/s]
|
1564 |
60%|█████▉ | 511/852 [00:06<00:04, 77.92it/s]
|
1565 |
61%|██████ | 520/852 [00:06<00:04, 79.03it/s]
|
1566 |
62%|██████▏ | 528/852 [00:06<00:04, 77.15it/s]
|
1567 |
63%|██████▎ | 537/852 [00:06<00:03, 79.37it/s]
|
1568 |
64%|██████▍ | 546/852 [00:06<00:03, 80.04it/s]
|
1569 |
65%|██████▌ | 555/852 [00:07<00:03, 77.62it/s]
|
1570 |
66%|██████▌ | 564/852 [00:07<00:03, 78.59it/s]
|
1571 |
67%|██████▋ | 572/852 [00:07<00:03, 78.53it/s]
|
1572 |
68%|██████▊ | 580/852 [00:07<00:03, 78.15it/s]
|
1573 |
69%|██████▉ | 588/852 [00:07<00:03, 77.41it/s]
|
1574 |
70%|███████ | 597/852 [00:07<00:03, 78.12it/s]
|
1575 |
71%|███████ | 605/852 [00:07<00:03, 73.52it/s]
|
1576 |
72%|███████▏ | 613/852 [00:07<00:03, 74.71it/s]
|
1577 |
73%|███████▎ | 621/852 [00:07<00:03, 75.59it/s]
|
1578 |
74%|███████▍ | 629/852 [00:08<00:02, 74.68it/s]
|
1579 |
75%|███████▍ | 638/852 [00:08<00:02, 76.62it/s]
|
1580 |
76%|███████▌ | 646/852 [00:08<00:02, 74.33it/s]
|
1581 |
77%|███████▋ | 655/852 [00:08<00:02, 77.01it/s]
|
1582 |
78%|███████▊ | 663/852 [00:08<00:02, 77.50it/s]
|
1583 |
79%|███████▉ | 671/852 [00:08<00:02, 77.95it/s]
|
1584 |
80%|███████▉ | 680/852 [00:08<00:02, 78.57it/s]
|
1585 |
81%|████████ | 689/852 [00:08<00:02, 80.07it/s]
|
1586 |
82%|████████▏ | 698/852 [00:08<00:01, 80.51it/s]
|
1587 |
83%|████████▎ | 707/852 [00:09<00:01, 81.55it/s]
|
1588 |
84%|████████▍ | 716/852 [00:09<00:01, 81.02it/s]
|
1589 |
85%|████████▌ | 725/852 [00:09<00:01, 80.67it/s]
|
1590 |
86%|████████▌ | 734/852 [00:09<00:01, 81.53it/s]
|
1591 |
87%|████████▋ | 743/852 [00:09<00:01, 81.13it/s]
|
1592 |
88%|████████▊ | 752/852 [00:09<00:01, 80.94it/s]
|
1593 |
89%|████████▉ | 761/852 [00:09<00:01, 82.18it/s]
|
1594 |
90%|█████████ | 770/852 [00:09<00:01, 80.71it/s]
|
1595 |
91%|█████████▏| 779/852 [00:09<00:00, 80.08it/s]
|
1596 |
92%|█████████▏| 788/852 [00:10<00:00, 79.00it/s]
|
1597 |
93%|█████████▎| 796/852 [00:10<00:00, 79.25it/s]
|
1598 |
94%|█████████▍| 805/852 [00:10<00:00, 79.61it/s]
|
1599 |
95%|█████████▌| 813/852 [00:10<00:00, 77.98it/s]
|
1600 |
96%|█████████▋| 822/852 [00:10<00:00, 79.28it/s]
|
1601 |
98%|█████████▊| 831/852 [00:10<00:00, 80.44it/s]
|
1602 |
99%|█████████▊| 840/852 [00:10<00:00, 79.45it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1603 |
0%| | 0/1827 [00:00<?, ?it/s]
|
1604 |
1%| | 10/1827 [00:00<00:21, 86.39it/s]
|
1605 |
1%| | 19/1827 [00:00<00:23, 76.76it/s]
|
1606 |
1%|▏ | 27/1827 [00:00<00:23, 77.35it/s]
|
1607 |
2%|▏ | 35/1827 [00:00<00:23, 76.72it/s]
|
1608 |
2%|▏ | 44/1827 [00:00<00:22, 78.12it/s]
|
1609 |
3%|▎ | 52/1827 [00:00<00:22, 77.86it/s]
|
1610 |
3%|▎ | 60/1827 [00:00<00:23, 75.65it/s]
|
1611 |
4%|▍ | 69/1827 [00:00<00:22, 77.33it/s]
|
1612 |
4%|▍ | 78/1827 [00:00<00:22, 79.22it/s]
|
1613 |
5%|▍ | 86/1827 [00:01<00:22, 77.72it/s]
|
1614 |
5%|▌ | 95/1827 [00:01<00:21, 78.74it/s]
|
1615 |
6%|▌ | 104/1827 [00:01<00:21, 80.10it/s]
|
1616 |
6%|▌ | 113/1827 [00:01<00:21, 80.17it/s]
|
1617 |
7%|▋ | 122/1827 [00:01<00:21, 78.09it/s]
|
1618 |
7%|▋ | 130/1827 [00:01<00:21, 77.56it/s]
|
1619 |
8%|▊ | 139/1827 [00:01<00:21, 79.53it/s]
|
1620 |
8%|▊ | 148/1827 [00:01<00:20, 80.02it/s]
|
1621 |
9%|▊ | 157/1827 [00:02<00:21, 77.61it/s]
|
1622 |
9%|▉ | 166/1827 [00:02<00:21, 78.42it/s]
|
1623 |
10%|▉ | 174/1827 [00:02<00:21, 78.59it/s]
|
1624 |
10%|█ | 183/1827 [00:02<00:20, 80.08it/s]
|
1625 |
11%|█ | 192/1827 [00:02<00:20, 80.24it/s]
|
1626 |
11%|█ | 201/1827 [00:02<00:20, 78.80it/s]
|
1627 |
11%|█▏ | 210/1827 [00:02<00:20, 79.79it/s]
|
1628 |
12%|█▏ | 218/1827 [00:02<00:20, 79.07it/s]
|
1629 |
12%|█▏ | 227/1827 [00:02<00:19, 80.02it/s]
|
1630 |
13%|█▎ | 236/1827 [00:03<00:20, 77.94it/s]
|
1631 |
13%|█▎ | 245/1827 [00:03<00:19, 79.46it/s]
|
1632 |
14%|█▍ | 253/1827 [00:03<00:19, 79.43it/s]
|
1633 |
14%|█▍ | 261/1827 [00:03<00:19, 79.16it/s]
|
1634 |
15%|█▍ | 270/1827 [00:03<00:19, 80.39it/s]
|
1635 |
15%|█▌ | 279/1827 [00:03<00:18, 81.75it/s]
|
1636 |
16%|█▌ | 288/1827 [00:03<00:18, 81.38it/s]
|
1637 |
16%|█▋ | 297/1827 [00:03<00:18, 82.03it/s]
|
1638 |
17%|█▋ | 306/1827 [00:03<00:18, 80.70it/s]
|
1639 |
17%|█▋ | 315/1827 [00:03<00:18, 81.67it/s]
|
1640 |
18%|█▊ | 324/1827 [00:04<00:18, 81.89it/s]
|
1641 |
18%|█▊ | 333/1827 [00:04<00:18, 81.13it/s]
|
1642 |
19%|█▊ | 342/1827 [00:04<00:18, 82.33it/s]
|
1643 |
19%|█▉ | 351/1827 [00:04<00:18, 77.88it/s]
|
1644 |
20%|█▉ | 360/1827 [00:04<00:18, 79.12it/s]
|
1645 |
20%|██ | 369/1827 [00:04<00:18, 80.42it/s]
|
1646 |
21%|██ | 378/1827 [00:04<00:17, 81.01it/s]
|
1647 |
21%|██ | 387/1827 [00:04<00:17, 80.82it/s]
|
1648 |
22%|██▏ | 396/1827 [00:04<00:17, 80.20it/s]
|
1649 |
22%|██▏ | 405/1827 [00:05<00:17, 81.70it/s]
|
1650 |
23%|██▎ | 414/1827 [00:05<00:17, 79.66it/s]
|
1651 |
23%|██▎ | 423/1827 [00:05<00:17, 81.14it/s]
|
1652 |
24%|██▎ | 432/1827 [00:05<00:17, 79.99it/s]
|
1653 |
24%|██▍ | 441/1827 [00:05<00:17, 79.76it/s]
|
1654 |
25%|██▍ | 449/1827 [00:05<00:17, 79.62it/s]
|
1655 |
25%|██▌ | 458/1827 [00:05<00:17, 80.43it/s]
|
1656 |
26%|██▌ | 467/1827 [00:05<00:16, 81.29it/s]
|
1657 |
26%|██▌ | 476/1827 [00:05<00:17, 78.86it/s]
|
1658 |
26%|██▋ | 484/1827 [00:06<00:17, 78.63it/s]
|
1659 |
27%|██▋ | 492/1827 [00:06<00:17, 77.21it/s]
|
1660 |
27%|██▋ | 500/1827 [00:06<00:17, 77.67it/s]
|
1661 |
28%|██▊ | 508/1827 [00:06<00:16, 77.96it/s]
|
1662 |
28%|██▊ | 516/1827 [00:06<00:16, 78.33it/s]
|
1663 |
29%|██▊ | 525/1827 [00:06<00:16, 79.91it/s]
|
1664 |
29%|██▉ | 533/1827 [00:06<00:16, 78.68it/s]
|
1665 |
30%|██▉ | 542/1827 [00:06<00:16, 79.19it/s]
|
1666 |
30%|███ | 550/1827 [00:06<00:16, 78.85it/s]
|
1667 |
31%|███ | 558/1827 [00:07<00:16, 78.22it/s]
|
1668 |
31%|███ | 566/1827 [00:07<00:16, 78.72it/s]
|
1669 |
31%|███▏ | 575/1827 [00:07<00:15, 80.21it/s]
|
1670 |
32%|███▏ | 584/1827 [00:07<00:15, 78.95it/s]
|
1671 |
32%|███▏ | 593/1827 [00:07<00:15, 79.34it/s]
|
1672 |
33%|███▎ | 601/1827 [00:07<00:15, 79.41it/s]
|
1673 |
33%|███▎ | 609/1827 [00:07<00:15, 77.56it/s]
|
1674 |
34%|███▍ | 617/1827 [00:07<00:15, 77.74it/s]
|
1675 |
34%|███▍ | 626/1827 [00:07<00:15, 78.70it/s]
|
1676 |
35%|███▍ | 634/1827 [00:07<00:15, 78.98it/s]
|
1677 |
35%|███▌ | 643/1827 [00:08<00:14, 79.92it/s]
|
1678 |
36%|███▌ | 651/1827 [00:08<00:15, 75.14it/s]
|
1679 |
36%|███▌ | 659/1827 [00:08<00:15, 75.62it/s]
|
1680 |
37%|███▋ | 668/1827 [00:08<00:14, 77.65it/s]
|
1681 |
37%|███▋ | 676/1827 [00:08<00:14, 77.24it/s]
|
1682 |
37%|███▋ | 684/1827 [00:08<00:14, 77.46it/s]
|
1683 |
38%|███▊ | 693/1827 [00:08<00:14, 79.15it/s]
|
1684 |
38%|███▊ | 701/1827 [00:08<00:14, 78.98it/s]
|
1685 |
39%|███▉ | 710/1827 [00:08<00:13, 80.68it/s]
|
1686 |
39%|███▉ | 719/1827 [00:09<00:13, 82.04it/s]
|
1687 |
40%|███▉ | 728/1827 [00:09<00:13, 82.63it/s]
|
1688 |
40%|████ | 737/1827 [00:09<00:13, 82.07it/s]
|
1689 |
41%|████ | 746/1827 [00:09<00:13, 82.50it/s]
|
1690 |
41%|████▏ | 755/1827 [00:09<00:12, 83.02it/s]
|
1691 |
42%|████▏ | 764/1827 [00:09<00:12, 82.22it/s]
|
1692 |
42%|████▏ | 773/1827 [00:09<00:12, 81.23it/s]
|
1693 |
43%|████▎ | 782/1827 [00:09<00:13, 79.31it/s]
|
1694 |
43%|████▎ | 791/1827 [00:09<00:12, 80.00it/s]
|
1695 |
44%|████▍ | 800/1827 [00:10<00:12, 79.01it/s]
|
1696 |
44%|████▍ | 809/1827 [00:10<00:12, 80.15it/s]
|
1697 |
45%|████▍ | 818/1827 [00:10<00:12, 79.71it/s]
|
1698 |
45%|████▌ | 827/1827 [00:10<00:12, 80.88it/s]
|
1699 |
46%|████▌ | 836/1827 [00:10<00:12, 79.73it/s]
|
1700 |
46%|████▋ | 845/1827 [00:10<00:12, 80.84it/s]
|
1701 |
47%|████▋ | 854/1827 [00:10<00:11, 81.23it/s]
|
1702 |
47%|████▋ | 863/1827 [00:10<00:11, 81.73it/s]
|
1703 |
48%|████▊ | 872/1827 [00:10<00:11, 81.75it/s]
|
1704 |
48%|████▊ | 881/1827 [00:11<00:11, 81.62it/s]
|
1705 |
49%|████▊ | 890/1827 [00:11<00:11, 81.91it/s]
|
1706 |
49%|████▉ | 899/1827 [00:11<00:11, 81.83it/s]
|
1707 |
50%|████▉ | 908/1827 [00:11<00:11, 81.18it/s]
|
1708 |
50%|█████ | 917/1827 [00:11<00:11, 81.62it/s]
|
1709 |
51%|█████ | 926/1827 [00:11<00:11, 80.27it/s]
|
1710 |
51%|█████ | 935/1827 [00:11<00:11, 77.20it/s]
|
1711 |
52%|█████▏ | 943/1827 [00:11<00:11, 77.54it/s]
|
1712 |
52%|█████▏ | 951/1827 [00:11<00:11, 76.33it/s]
|
1713 |
52%|█████▏ | 959/1827 [00:12<00:11, 76.78it/s]
|
1714 |
53%|█████▎ | 967/1827 [00:12<00:11, 77.61it/s]
|
1715 |
53%|█████▎ | 975/1827 [00:12<00:11, 76.48it/s]
|
1716 |
54%|█████▍ | 983/1827 [00:12<00:11, 76.46it/s]
|
1717 |
54%|█████▍ | 991/1827 [00:12<00:10, 76.57it/s]
|
1718 |
55%|█████▍ | 999/1827 [00:12<00:10, 77.28it/s]
|
1719 |
55%|█████▌ | 1007/1827 [00:12<00:10, 76.62it/s]
|
1720 |
56%|█████▌ | 1015/1827 [00:12<00:10, 77.11it/s]
|
1721 |
56%|█████▌ | 1023/1827 [00:12<00:10, 77.82it/s]
|
1722 |
56%|█████▋ | 1032/1827 [00:13<00:10, 78.52it/s]
|
1723 |
57%|█████▋ | 1040/1827 [00:13<00:10, 77.02it/s]
|
1724 |
57%|█████▋ | 1048/1827 [00:13<00:10, 77.36it/s]
|
1725 |
58%|█████▊ | 1056/1827 [00:13<00:09, 77.94it/s]
|
1726 |
58%|█████▊ | 1065/1827 [00:13<00:09, 79.46it/s]
|
1727 |
59%|█████▉ | 1074/1827 [00:13<00:09, 80.78it/s]
|
1728 |
59%|█████▉ | 1083/1827 [00:13<00:09, 81.47it/s]
|
1729 |
60%|█████▉ | 1092/1827 [00:13<00:08, 81.99it/s]
|
1730 |
60%|██████ | 1101/1827 [00:13<00:08, 82.35it/s]
|
1731 |
61%|██████ | 1110/1827 [00:13<00:08, 81.93it/s]
|
1732 |
61%|██████ | 1119/1827 [00:14<00:08, 81.44it/s]
|
1733 |
62%|██████▏ | 1128/1827 [00:14<00:08, 81.89it/s]
|
1734 |
62%|██████▏ | 1137/1827 [00:14<00:08, 82.95it/s]
|
1735 |
63%|██████▎ | 1146/1827 [00:14<00:08, 83.37it/s]
|
1736 |
63%|██████▎ | 1155/1827 [00:14<00:08, 83.36it/s]
|
1737 |
64%|██████▎ | 1164/1827 [00:14<00:08, 80.93it/s]
|
1738 |
64%|██████▍ | 1173/1827 [00:14<00:08, 81.26it/s]
|
1739 |
65%|██████▍ | 1182/1827 [00:14<00:08, 79.25it/s]
|
1740 |
65%|██████▌ | 1191/1827 [00:14<00:07, 79.98it/s]
|
1741 |
66%|██████▌ | 1200/1827 [00:15<00:07, 80.51it/s]
|
1742 |
66%|██████▌ | 1209/1827 [00:15<00:07, 80.69it/s]
|
1743 |
67%|██████▋ | 1218/1827 [00:15<00:07, 79.18it/s]
|
1744 |
67%|██████▋ | 1227/1827 [00:15<00:07, 80.18it/s]
|
1745 |
68%|██████▊ | 1236/1827 [00:15<00:07, 80.99it/s]
|
1746 |
68%|██████▊ | 1245/1827 [00:15<00:07, 81.49it/s]
|
1747 |
69%|██████▊ | 1254/1827 [00:15<00:07, 78.96it/s]
|
1748 |
69%|██████▉ | 1262/1827 [00:15<00:07, 78.04it/s]
|
1749 |
70%|██████▉ | 1271/1827 [00:15<00:06, 79.53it/s]
|
1750 |
70%|███████ | 1280/1827 [00:16<00:06, 80.75it/s]
|
1751 |
71%|███████ | 1289/1827 [00:16<00:06, 81.53it/s]
|
1752 |
71%|███████ | 1298/1827 [00:16<00:06, 82.69it/s]
|
1753 |
72%|███████▏ | 1307/1827 [00:16<00:06, 82.39it/s]
|
1754 |
72%|███████▏ | 1316/1827 [00:16<00:06, 81.93it/s]
|
1755 |
73%|███████▎ | 1325/1827 [00:16<00:06, 79.75it/s]
|
1756 |
73%|███████▎ | 1334/1827 [00:16<00:06, 80.32it/s]
|
1757 |
74%|███████▎ | 1343/1827 [00:16<00:06, 79.81it/s]
|
1758 |
74%|███████▍ | 1351/1827 [00:16<00:05, 79.79it/s]
|
1759 |
74%|███████▍ | 1359/1827 [00:17<00:05, 79.73it/s]
|
1760 |
75%|███████▍ | 1368/1827 [00:17<00:05, 80.26it/s]
|
1761 |
75%|███████▌ | 1377/1827 [00:17<00:05, 79.57it/s]
|
1762 |
76%|███████▌ | 1386/1827 [00:17<00:05, 80.10it/s]
|
1763 |
76%|███████▋ | 1395/1827 [00:17<00:05, 79.37it/s]
|
1764 |
77%|███████▋ | 1404/1827 [00:17<00:05, 80.47it/s]
|
1765 |
77%|███████▋ | 1413/1827 [00:17<00:05, 80.08it/s]
|
1766 |
78%|███████▊ | 1422/1827 [00:17<00:05, 79.11it/s]
|
1767 |
78%|███████▊ | 1430/1827 [00:17<00:05, 77.31it/s]
|
1768 |
79%|███████▊ | 1438/1827 [00:18<00:05, 75.53it/s]
|
1769 |
79%|███████▉ | 1446/1827 [00:18<00:04, 76.28it/s]
|
1770 |
80%|███████▉ | 1455/1827 [00:18<00:04, 77.69it/s]
|
1771 |
80%|████████ | 1463/1827 [00:18<00:04, 77.56it/s]
|
1772 |
81%|████████ | 1471/1827 [00:18<00:04, 75.50it/s]
|
1773 |
81%|████████ | 1479/1827 [00:18<00:04, 75.70it/s]
|
1774 |
81%|████████▏ | 1487/1827 [00:18<00:04, 76.40it/s]
|
1775 |
82%|████████▏ | 1495/1827 [00:18<00:04, 74.59it/s]
|
1776 |
82%|████████▏ | 1503/1827 [00:18<00:04, 74.46it/s]
|
1777 |
83%|████████▎ | 1511/1827 [00:19<00:04, 76.02it/s]
|
1778 |
83%|████████▎ | 1520/1827 [00:19<00:03, 77.31it/s]
|
1779 |
84%|████████▎ | 1528/1827 [00:19<00:03, 77.21it/s]
|
1780 |
84%|████████▍ | 1536/1827 [00:19<00:03, 77.82it/s]
|
1781 |
85%|████████▍ | 1544/1827 [00:19<00:03, 78.06it/s]
|
1782 |
85%|████████▍ | 1552/1827 [00:19<00:03, 78.36it/s]
|
1783 |
85%|████████▌ | 1560/1827 [00:19<00:03, 78.42it/s]
|
1784 |
86%|████████▌ | 1568/1827 [00:19<00:03, 78.31it/s]
|
1785 |
86%|████████▋ | 1576/1827 [00:19<00:03, 77.83it/s]
|
1786 |
87%|████████▋ | 1584/1827 [00:19<00:03, 78.43it/s]
|
1787 |
87%|████████▋ | 1592/1827 [00:20<00:03, 78.12it/s]
|
1788 |
88%|████████▊ | 1600/1827 [00:20<00:02, 78.44it/s]
|
1789 |
88%|████████▊ | 1609/1827 [00:20<00:02, 79.26it/s]
|
1790 |
89%|████████▊ | 1617/1827 [00:20<00:02, 78.96it/s]
|
1791 |
89%|████████▉ | 1625/1827 [00:20<00:02, 73.35it/s]
|
1792 |
89%|████████▉ | 1633/1827 [00:20<00:02, 74.00it/s]
|
1793 |
90%|████████▉ | 1641/1827 [00:20<00:02, 75.00it/s]
|
1794 |
90%|█████████ | 1650/1827 [00:20<00:02, 76.76it/s]
|
1795 |
91%|█████████ | 1658/1827 [00:20<00:02, 76.99it/s]
|
1796 |
91%|█████████ | 1666/1827 [00:21<00:02, 76.77it/s]
|
1797 |
92%|█████████▏| 1674/1827 [00:21<00:01, 77.34it/s]
|
1798 |
92%|█████████▏| 1683/1827 [00:21<00:01, 78.69it/s]
|
1799 |
93%|█████████▎| 1692/1827 [00:21<00:01, 77.53it/s]
|
1800 |
93%|█████████▎| 1700/1827 [00:21<00:01, 77.18it/s]
|
1801 |
93%|█████████▎| 1708/1827 [00:21<00:01, 77.66it/s]
|
1802 |
94%|█████████▍| 1717/1827 [00:21<00:01, 78.89it/s]
|
1803 |
94%|█████████▍| 1725/1827 [00:21<00:01, 75.55it/s]
|
1804 |
95%|█████████▍| 1733/1827 [00:21<00:01, 76.47it/s]
|
1805 |
95%|█████████▌| 1741/1827 [00:21<00:01, 77.39it/s]
|
1806 |
96%|█████████▌| 1750/1827 [00:22<00:00, 79.17it/s]
|
1807 |
96%|█████████▌| 1758/1827 [00:22<00:00, 79.36it/s]
|
1808 |
97%|█████████▋| 1767/1827 [00:22<00:00, 80.84it/s]
|
1809 |
97%|█████████▋| 1776/1827 [00:22<00:00, 81.41it/s]
|
1810 |
98%|█████████▊| 1785/1827 [00:22<00:00, 82.37it/s]
|
1811 |
98%|█████████▊| 1794/1827 [00:22<00:00, 79.49it/s]
|
1812 |
99%|█████████▊| 1802/1827 [00:22<00:00, 79.48it/s]
|
1813 |
99%|█████████▉| 1810/1827 [00:22<00:00, 79.52it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1501 |
{'eval_loss': 1.6103088855743408, 'eval_precision': 0.09223170184104176, 'eval_recall': 0.9439338235294118, 'eval_f1': 0.16804385175488834, 'eval_accuracy': 0.7862743213368668, 'eval_runtime': 14.5612, 'eval_samples_per_second': 467.681, 'eval_steps_per_second': 58.512, 'epoch': 10.0}
|
1502 |
{'train_runtime': 1542.5562, 'train_samples_per_second': 224.329, 'train_steps_per_second': 3.507, 'train_loss': 0.0812657987344287, 'epoch': 10.0}
|
1503 |
|
1504 |
+
***** train metrics *****
|
1505 |
+
epoch = 10.0
|
1506 |
+
total_flos = 15996936GF
|
1507 |
+
train_loss = 0.0813
|
1508 |
+
train_runtime = 0:25:42.55
|
1509 |
+
train_samples = 34604
|
1510 |
+
train_samples_per_second = 224.329
|
1511 |
+
train_steps_per_second = 3.507
|
1512 |
+
09/06/2024 00:35:09 - INFO - __main__ - *** Evaluate ***
|
1513 |
+
[INFO|trainer.py:811] 2024-09-06 00:35:09,352 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
|
1514 |
+
[INFO|trainer.py:3819] 2024-09-06 00:35:09,354 >>
|
1515 |
+
***** Running Evaluation *****
|
1516 |
+
[INFO|trainer.py:3821] 2024-09-06 00:35:09,354 >> Num examples = 6810
|
1517 |
+
[INFO|trainer.py:3824] 2024-09-06 00:35:09,354 >> Batch size = 8
|
1518 |
+
|
1519 |
0%| | 0/852 [00:00<?, ?it/s]
|
1520 |
1%| | 10/852 [00:00<00:09, 89.32it/s]
|
1521 |
2%|▏ | 19/852 [00:00<00:10, 77.68it/s]
|
1522 |
3%|▎ | 27/852 [00:00<00:10, 77.19it/s]
|
1523 |
4%|▍ | 35/852 [00:00<00:10, 77.86it/s]
|
1524 |
5%|▌ | 44/852 [00:00<00:10, 79.22it/s]
|
1525 |
6%|▌ | 53/852 [00:00<00:09, 80.49it/s]
|
1526 |
7%|▋ | 62/852 [00:00<00:09, 81.06it/s]
|
1527 |
8%|▊ | 71/852 [00:00<00:09, 78.26it/s]
|
1528 |
9%|▉ | 80/852 [00:01<00:09, 78.24it/s]
|
1529 |
10%|█ | 89/852 [00:01<00:09, 78.87it/s]
|
1530 |
11%|█▏ | 97/852 [00:01<00:09, 78.68it/s]
|
1531 |
12%|█▏ | 106/852 [00:01<00:09, 79.83it/s]
|
1532 |
13%|█▎ | 114/852 [00:01<00:09, 79.66it/s]
|
1533 |
14%|█▍ | 123/852 [00:01<00:09, 80.84it/s]
|
1534 |
15%|█▌ | 132/852 [00:01<00:09, 76.65it/s]
|
1535 |
16%|█▋ | 140/852 [00:01<00:09, 76.74it/s]
|
1536 |
17%|█▋ | 148/852 [00:01<00:09, 76.37it/s]
|
1537 |
18%|█▊ | 156/852 [00:01<00:09, 77.14it/s]
|
1538 |
19%|█▉ | 164/852 [00:02<00:08, 77.82it/s]
|
1539 |
20%|██ | 172/852 [00:02<00:08, 77.95it/s]
|
1540 |
21%|██ | 180/852 [00:02<00:08, 76.88it/s]
|
1541 |
22%|██▏ | 188/852 [00:02<00:08, 77.69it/s]
|
1542 |
23%|██▎ | 196/852 [00:02<00:08, 77.62it/s]
|
1543 |
24%|██▍ | 205/852 [00:02<00:08, 78.72it/s]
|
1544 |
25%|██▌ | 213/852 [00:02<00:08, 77.59it/s]
|
1545 |
26%|██▌ | 221/852 [00:02<00:08, 76.68it/s]
|
1546 |
27%|██▋ | 230/852 [00:02<00:07, 77.89it/s]
|
1547 |
28%|██▊ | 238/852 [00:03<00:07, 77.24it/s]
|
1548 |
29%|██▉ | 246/852 [00:03<00:07, 75.97it/s]
|
1549 |
30%|██▉ | 255/852 [00:03<00:07, 78.31it/s]
|
1550 |
31%|███ | 264/852 [00:03<00:07, 79.83it/s]
|
1551 |
32%|███▏ | 272/852 [00:03<00:07, 79.08it/s]
|
1552 |
33%|███▎ | 281/852 [00:03<00:07, 80.99it/s]
|
1553 |
34%|███▍ | 290/852 [00:03<00:07, 79.72it/s]
|
1554 |
35%|███▍ | 298/852 [00:03<00:06, 79.60it/s]
|
1555 |
36%|███▌ | 307/852 [00:03<00:06, 80.29it/s]
|
1556 |
37%|███▋ | 316/852 [00:04<00:06, 78.10it/s]
|
1557 |
38%|███▊ | 324/852 [00:04<00:06, 78.24it/s]
|
1558 |
39%|███▉ | 332/852 [00:04<00:06, 77.89it/s]
|
1559 |
40%|████ | 341/852 [00:04<00:06, 79.08it/s]
|
1560 |
41%|████ | 350/852 [00:04<00:06, 79.99it/s]
|
1561 |
42%|████▏ | 359/852 [00:04<00:06, 78.18it/s]
|
1562 |
43%|████▎ | 368/852 [00:04<00:06, 79.04it/s]
|
1563 |
44%|████▍ | 377/852 [00:04<00:05, 79.49it/s]
|
1564 |
45%|████▌ | 385/852 [00:04<00:05, 78.76it/s]
|
1565 |
46%|████▌ | 394/852 [00:05<00:05, 79.43it/s]
|
1566 |
47%|████▋ | 402/852 [00:05<00:05, 79.23it/s]
|
1567 |
48%|████▊ | 410/852 [00:05<00:05, 77.00it/s]
|
1568 |
49%|████▉ | 418/852 [00:05<00:05, 77.80it/s]
|
1569 |
50%|█████ | 426/852 [00:05<00:05, 76.10it/s]
|
1570 |
51%|█████ | 435/852 [00:05<00:05, 77.97it/s]
|
1571 |
52%|█████▏ | 444/852 [00:05<00:05, 79.13it/s]
|
1572 |
53%|█████▎ | 453/852 [00:05<00:04, 79.97it/s]
|
1573 |
54%|█████▍ | 461/852 [00:05<00:05, 77.94it/s]
|
1574 |
55%|█████▌ | 469/852 [00:05<00:04, 77.33it/s]
|
1575 |
56%|█████▌ | 477/852 [00:06<00:05, 74.29it/s]
|
1576 |
57%|█████▋ | 485/852 [00:06<00:04, 74.32it/s]
|
1577 |
58%|█████▊ | 494/852 [00:06<00:04, 76.20it/s]
|
1578 |
59%|█████▉ | 503/852 [00:06<00:04, 77.78it/s]
|
1579 |
60%|█████▉ | 511/852 [00:06<00:04, 77.92it/s]
|
1580 |
61%|██████ | 520/852 [00:06<00:04, 79.03it/s]
|
1581 |
62%|██████▏ | 528/852 [00:06<00:04, 77.15it/s]
|
1582 |
63%|██████▎ | 537/852 [00:06<00:03, 79.37it/s]
|
1583 |
64%|██████▍ | 546/852 [00:06<00:03, 80.04it/s]
|
1584 |
65%|██████▌ | 555/852 [00:07<00:03, 77.62it/s]
|
1585 |
66%|██████▌ | 564/852 [00:07<00:03, 78.59it/s]
|
1586 |
67%|██████▋ | 572/852 [00:07<00:03, 78.53it/s]
|
1587 |
68%|██████▊ | 580/852 [00:07<00:03, 78.15it/s]
|
1588 |
69%|██████▉ | 588/852 [00:07<00:03, 77.41it/s]
|
1589 |
70%|███████ | 597/852 [00:07<00:03, 78.12it/s]
|
1590 |
71%|███████ | 605/852 [00:07<00:03, 73.52it/s]
|
1591 |
72%|███████▏ | 613/852 [00:07<00:03, 74.71it/s]
|
1592 |
73%|███████▎ | 621/852 [00:07<00:03, 75.59it/s]
|
1593 |
74%|███████▍ | 629/852 [00:08<00:02, 74.68it/s]
|
1594 |
75%|███████▍ | 638/852 [00:08<00:02, 76.62it/s]
|
1595 |
76%|███████▌ | 646/852 [00:08<00:02, 74.33it/s]
|
1596 |
77%|███████▋ | 655/852 [00:08<00:02, 77.01it/s]
|
1597 |
78%|███████▊ | 663/852 [00:08<00:02, 77.50it/s]
|
1598 |
79%|███████▉ | 671/852 [00:08<00:02, 77.95it/s]
|
1599 |
80%|███████▉ | 680/852 [00:08<00:02, 78.57it/s]
|
1600 |
81%|████████ | 689/852 [00:08<00:02, 80.07it/s]
|
1601 |
82%|████████▏ | 698/852 [00:08<00:01, 80.51it/s]
|
1602 |
83%|████████▎ | 707/852 [00:09<00:01, 81.55it/s]
|
1603 |
84%|████████▍ | 716/852 [00:09<00:01, 81.02it/s]
|
1604 |
85%|████████▌ | 725/852 [00:09<00:01, 80.67it/s]
|
1605 |
86%|████████▌ | 734/852 [00:09<00:01, 81.53it/s]
|
1606 |
87%|████████▋ | 743/852 [00:09<00:01, 81.13it/s]
|
1607 |
88%|████████▊ | 752/852 [00:09<00:01, 80.94it/s]
|
1608 |
89%|████████▉ | 761/852 [00:09<00:01, 82.18it/s]
|
1609 |
90%|█████████ | 770/852 [00:09<00:01, 80.71it/s]
|
1610 |
91%|█████████▏| 779/852 [00:09<00:00, 80.08it/s]
|
1611 |
92%|█████████▏| 788/852 [00:10<00:00, 79.00it/s]
|
1612 |
93%|█████████▎| 796/852 [00:10<00:00, 79.25it/s]
|
1613 |
94%|█████████▍| 805/852 [00:10<00:00, 79.61it/s]
|
1614 |
95%|█████████▌| 813/852 [00:10<00:00, 77.98it/s]
|
1615 |
96%|█████████▋| 822/852 [00:10<00:00, 79.28it/s]
|
1616 |
98%|█████████▊| 831/852 [00:10<00:00, 80.44it/s]
|
1617 |
99%|█████████▊| 840/852 [00:10<00:00, 79.45it/s]
|
1618 |
+
_warn_prf(average, modifier, msg_start, len(result))
|
1619 |
+
|
1620 |
+
***** eval metrics *****
|
1621 |
+
epoch = 10.0
|
1622 |
+
eval_accuracy = 0.789
|
1623 |
+
eval_f1 = 0.1711
|
1624 |
+
eval_loss = 1.1806
|
1625 |
+
eval_precision = 0.094
|
1626 |
+
eval_recall = 0.954
|
1627 |
+
eval_runtime = 0:00:14.51
|
1628 |
+
eval_samples = 6810
|
1629 |
+
eval_samples_per_second = 469.318
|
1630 |
+
eval_steps_per_second = 58.716
|
1631 |
+
09/06/2024 00:35:23 - INFO - __main__ - *** Predict ***
|
1632 |
+
[INFO|trainer.py:811] 2024-09-06 00:35:23,872 >> The following columns in the test set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
|
1633 |
+
[INFO|trainer.py:3819] 2024-09-06 00:35:23,875 >>
|
1634 |
+
***** Running Prediction *****
|
1635 |
+
[INFO|trainer.py:3821] 2024-09-06 00:35:23,875 >> Num examples = 14614
|
1636 |
+
[INFO|trainer.py:3824] 2024-09-06 00:35:23,875 >> Batch size = 8
|
1637 |
+
|
1638 |
0%| | 0/1827 [00:00<?, ?it/s]
|
1639 |
1%| | 10/1827 [00:00<00:21, 86.39it/s]
|
1640 |
1%| | 19/1827 [00:00<00:23, 76.76it/s]
|
1641 |
1%|▏ | 27/1827 [00:00<00:23, 77.35it/s]
|
1642 |
2%|▏ | 35/1827 [00:00<00:23, 76.72it/s]
|
1643 |
2%|▏ | 44/1827 [00:00<00:22, 78.12it/s]
|
1644 |
3%|▎ | 52/1827 [00:00<00:22, 77.86it/s]
|
1645 |
3%|▎ | 60/1827 [00:00<00:23, 75.65it/s]
|
1646 |
4%|▍ | 69/1827 [00:00<00:22, 77.33it/s]
|
1647 |
4%|▍ | 78/1827 [00:00<00:22, 79.22it/s]
|
1648 |
5%|▍ | 86/1827 [00:01<00:22, 77.72it/s]
|
1649 |
5%|▌ | 95/1827 [00:01<00:21, 78.74it/s]
|
1650 |
6%|▌ | 104/1827 [00:01<00:21, 80.10it/s]
|
1651 |
6%|▌ | 113/1827 [00:01<00:21, 80.17it/s]
|
1652 |
7%|▋ | 122/1827 [00:01<00:21, 78.09it/s]
|
1653 |
7%|▋ | 130/1827 [00:01<00:21, 77.56it/s]
|
1654 |
8%|▊ | 139/1827 [00:01<00:21, 79.53it/s]
|
1655 |
8%|▊ | 148/1827 [00:01<00:20, 80.02it/s]
|
1656 |
9%|▊ | 157/1827 [00:02<00:21, 77.61it/s]
|
1657 |
9%|▉ | 166/1827 [00:02<00:21, 78.42it/s]
|
1658 |
10%|▉ | 174/1827 [00:02<00:21, 78.59it/s]
|
1659 |
10%|█ | 183/1827 [00:02<00:20, 80.08it/s]
|
1660 |
11%|█ | 192/1827 [00:02<00:20, 80.24it/s]
|
1661 |
11%|█ | 201/1827 [00:02<00:20, 78.80it/s]
|
1662 |
11%|█▏ | 210/1827 [00:02<00:20, 79.79it/s]
|
1663 |
12%|█▏ | 218/1827 [00:02<00:20, 79.07it/s]
|
1664 |
12%|█▏ | 227/1827 [00:02<00:19, 80.02it/s]
|
1665 |
13%|█▎ | 236/1827 [00:03<00:20, 77.94it/s]
|
1666 |
13%|█▎ | 245/1827 [00:03<00:19, 79.46it/s]
|
1667 |
14%|█▍ | 253/1827 [00:03<00:19, 79.43it/s]
|
1668 |
14%|█▍ | 261/1827 [00:03<00:19, 79.16it/s]
|
1669 |
15%|█▍ | 270/1827 [00:03<00:19, 80.39it/s]
|
1670 |
15%|█▌ | 279/1827 [00:03<00:18, 81.75it/s]
|
1671 |
16%|█▌ | 288/1827 [00:03<00:18, 81.38it/s]
|
1672 |
16%|█▋ | 297/1827 [00:03<00:18, 82.03it/s]
|
1673 |
17%|█▋ | 306/1827 [00:03<00:18, 80.70it/s]
|
1674 |
17%|█▋ | 315/1827 [00:03<00:18, 81.67it/s]
|
1675 |
18%|█▊ | 324/1827 [00:04<00:18, 81.89it/s]
|
1676 |
18%|█▊ | 333/1827 [00:04<00:18, 81.13it/s]
|
1677 |
19%|█▊ | 342/1827 [00:04<00:18, 82.33it/s]
|
1678 |
19%|█▉ | 351/1827 [00:04<00:18, 77.88it/s]
|
1679 |
20%|█▉ | 360/1827 [00:04<00:18, 79.12it/s]
|
1680 |
20%|██ | 369/1827 [00:04<00:18, 80.42it/s]
|
1681 |
21%|██ | 378/1827 [00:04<00:17, 81.01it/s]
|
1682 |
21%|██ | 387/1827 [00:04<00:17, 80.82it/s]
|
1683 |
22%|██▏ | 396/1827 [00:04<00:17, 80.20it/s]
|
1684 |
22%|██▏ | 405/1827 [00:05<00:17, 81.70it/s]
|
1685 |
23%|██▎ | 414/1827 [00:05<00:17, 79.66it/s]
|
1686 |
23%|██▎ | 423/1827 [00:05<00:17, 81.14it/s]
|
1687 |
24%|██▎ | 432/1827 [00:05<00:17, 79.99it/s]
|
1688 |
24%|██▍ | 441/1827 [00:05<00:17, 79.76it/s]
|
1689 |
25%|██▍ | 449/1827 [00:05<00:17, 79.62it/s]
|
1690 |
25%|██▌ | 458/1827 [00:05<00:17, 80.43it/s]
|
1691 |
26%|██▌ | 467/1827 [00:05<00:16, 81.29it/s]
|
1692 |
26%|██▌ | 476/1827 [00:05<00:17, 78.86it/s]
|
1693 |
26%|██▋ | 484/1827 [00:06<00:17, 78.63it/s]
|
1694 |
27%|██▋ | 492/1827 [00:06<00:17, 77.21it/s]
|
1695 |
27%|██▋ | 500/1827 [00:06<00:17, 77.67it/s]
|
1696 |
28%|██▊ | 508/1827 [00:06<00:16, 77.96it/s]
|
1697 |
28%|██▊ | 516/1827 [00:06<00:16, 78.33it/s]
|
1698 |
29%|██▊ | 525/1827 [00:06<00:16, 79.91it/s]
|
1699 |
29%|██▉ | 533/1827 [00:06<00:16, 78.68it/s]
|
1700 |
30%|██▉ | 542/1827 [00:06<00:16, 79.19it/s]
|
1701 |
30%|███ | 550/1827 [00:06<00:16, 78.85it/s]
|
1702 |
31%|███ | 558/1827 [00:07<00:16, 78.22it/s]
|
1703 |
31%|███ | 566/1827 [00:07<00:16, 78.72it/s]
|
1704 |
31%|███▏ | 575/1827 [00:07<00:15, 80.21it/s]
|
1705 |
32%|███▏ | 584/1827 [00:07<00:15, 78.95it/s]
|
1706 |
32%|███▏ | 593/1827 [00:07<00:15, 79.34it/s]
|
1707 |
33%|███▎ | 601/1827 [00:07<00:15, 79.41it/s]
|
1708 |
33%|███▎ | 609/1827 [00:07<00:15, 77.56it/s]
|
1709 |
34%|███▍ | 617/1827 [00:07<00:15, 77.74it/s]
|
1710 |
34%|███▍ | 626/1827 [00:07<00:15, 78.70it/s]
|
1711 |
35%|███▍ | 634/1827 [00:07<00:15, 78.98it/s]
|
1712 |
35%|███▌ | 643/1827 [00:08<00:14, 79.92it/s]
|
1713 |
36%|███▌ | 651/1827 [00:08<00:15, 75.14it/s]
|
1714 |
36%|███▌ | 659/1827 [00:08<00:15, 75.62it/s]
|
1715 |
37%|███▋ | 668/1827 [00:08<00:14, 77.65it/s]
|
1716 |
37%|███▋ | 676/1827 [00:08<00:14, 77.24it/s]
|
1717 |
37%|███▋ | 684/1827 [00:08<00:14, 77.46it/s]
|
1718 |
38%|███▊ | 693/1827 [00:08<00:14, 79.15it/s]
|
1719 |
38%|███▊ | 701/1827 [00:08<00:14, 78.98it/s]
|
1720 |
39%|███▉ | 710/1827 [00:08<00:13, 80.68it/s]
|
1721 |
39%|███▉ | 719/1827 [00:09<00:13, 82.04it/s]
|
1722 |
40%|███▉ | 728/1827 [00:09<00:13, 82.63it/s]
|
1723 |
40%|████ | 737/1827 [00:09<00:13, 82.07it/s]
|
1724 |
41%|████ | 746/1827 [00:09<00:13, 82.50it/s]
|
1725 |
41%|████▏ | 755/1827 [00:09<00:12, 83.02it/s]
|
1726 |
42%|████▏ | 764/1827 [00:09<00:12, 82.22it/s]
|
1727 |
42%|████▏ | 773/1827 [00:09<00:12, 81.23it/s]
|
1728 |
43%|████▎ | 782/1827 [00:09<00:13, 79.31it/s]
|
1729 |
43%|████▎ | 791/1827 [00:09<00:12, 80.00it/s]
|
1730 |
44%|████▍ | 800/1827 [00:10<00:12, 79.01it/s]
|
1731 |
44%|████▍ | 809/1827 [00:10<00:12, 80.15it/s]
|
1732 |
45%|████▍ | 818/1827 [00:10<00:12, 79.71it/s]
|
1733 |
45%|████▌ | 827/1827 [00:10<00:12, 80.88it/s]
|
1734 |
46%|████▌ | 836/1827 [00:10<00:12, 79.73it/s]
|
1735 |
46%|████▋ | 845/1827 [00:10<00:12, 80.84it/s]
|
1736 |
47%|████▋ | 854/1827 [00:10<00:11, 81.23it/s]
|
1737 |
47%|████▋ | 863/1827 [00:10<00:11, 81.73it/s]
|
1738 |
48%|████▊ | 872/1827 [00:10<00:11, 81.75it/s]
|
1739 |
48%|████▊ | 881/1827 [00:11<00:11, 81.62it/s]
|
1740 |
49%|████▊ | 890/1827 [00:11<00:11, 81.91it/s]
|
1741 |
49%|████▉ | 899/1827 [00:11<00:11, 81.83it/s]
|
1742 |
50%|████▉ | 908/1827 [00:11<00:11, 81.18it/s]
|
1743 |
50%|█████ | 917/1827 [00:11<00:11, 81.62it/s]
|
1744 |
51%|█████ | 926/1827 [00:11<00:11, 80.27it/s]
|
1745 |
51%|█████ | 935/1827 [00:11<00:11, 77.20it/s]
|
1746 |
52%|█████▏ | 943/1827 [00:11<00:11, 77.54it/s]
|
1747 |
52%|█████▏ | 951/1827 [00:11<00:11, 76.33it/s]
|
1748 |
52%|█████▏ | 959/1827 [00:12<00:11, 76.78it/s]
|
1749 |
53%|█████▎ | 967/1827 [00:12<00:11, 77.61it/s]
|
1750 |
53%|█████▎ | 975/1827 [00:12<00:11, 76.48it/s]
|
1751 |
54%|█████▍ | 983/1827 [00:12<00:11, 76.46it/s]
|
1752 |
54%|█████▍ | 991/1827 [00:12<00:10, 76.57it/s]
|
1753 |
55%|█████▍ | 999/1827 [00:12<00:10, 77.28it/s]
|
1754 |
55%|█████▌ | 1007/1827 [00:12<00:10, 76.62it/s]
|
1755 |
56%|█████▌ | 1015/1827 [00:12<00:10, 77.11it/s]
|
1756 |
56%|█████▌ | 1023/1827 [00:12<00:10, 77.82it/s]
|
1757 |
56%|█████▋ | 1032/1827 [00:13<00:10, 78.52it/s]
|
1758 |
57%|█████▋ | 1040/1827 [00:13<00:10, 77.02it/s]
|
1759 |
57%|█████▋ | 1048/1827 [00:13<00:10, 77.36it/s]
|
1760 |
58%|█████▊ | 1056/1827 [00:13<00:09, 77.94it/s]
|
1761 |
58%|█████▊ | 1065/1827 [00:13<00:09, 79.46it/s]
|
1762 |
59%|█████▉ | 1074/1827 [00:13<00:09, 80.78it/s]
|
1763 |
59%|█████▉ | 1083/1827 [00:13<00:09, 81.47it/s]
|
1764 |
60%|█████▉ | 1092/1827 [00:13<00:08, 81.99it/s]
|
1765 |
60%|██████ | 1101/1827 [00:13<00:08, 82.35it/s]
|
1766 |
61%|██████ | 1110/1827 [00:13<00:08, 81.93it/s]
|
1767 |
61%|██████ | 1119/1827 [00:14<00:08, 81.44it/s]
|
1768 |
62%|██████▏ | 1128/1827 [00:14<00:08, 81.89it/s]
|
1769 |
62%|██████▏ | 1137/1827 [00:14<00:08, 82.95it/s]
|
1770 |
63%|██████▎ | 1146/1827 [00:14<00:08, 83.37it/s]
|
1771 |
63%|██████▎ | 1155/1827 [00:14<00:08, 83.36it/s]
|
1772 |
64%|██████▎ | 1164/1827 [00:14<00:08, 80.93it/s]
|
1773 |
64%|██████▍ | 1173/1827 [00:14<00:08, 81.26it/s]
|
1774 |
65%|██████▍ | 1182/1827 [00:14<00:08, 79.25it/s]
|
1775 |
65%|██████▌ | 1191/1827 [00:14<00:07, 79.98it/s]
|
1776 |
66%|██████▌ | 1200/1827 [00:15<00:07, 80.51it/s]
|
1777 |
66%|██████▌ | 1209/1827 [00:15<00:07, 80.69it/s]
|
1778 |
67%|██████▋ | 1218/1827 [00:15<00:07, 79.18it/s]
|
1779 |
67%|██████▋ | 1227/1827 [00:15<00:07, 80.18it/s]
|
1780 |
68%|██████▊ | 1236/1827 [00:15<00:07, 80.99it/s]
|
1781 |
68%|██████▊ | 1245/1827 [00:15<00:07, 81.49it/s]
|
1782 |
69%|██████▊ | 1254/1827 [00:15<00:07, 78.96it/s]
|
1783 |
69%|██████▉ | 1262/1827 [00:15<00:07, 78.04it/s]
|
1784 |
70%|██████▉ | 1271/1827 [00:15<00:06, 79.53it/s]
|
1785 |
70%|███████ | 1280/1827 [00:16<00:06, 80.75it/s]
|
1786 |
71%|███████ | 1289/1827 [00:16<00:06, 81.53it/s]
|
1787 |
71%|███████ | 1298/1827 [00:16<00:06, 82.69it/s]
|
1788 |
72%|███████▏ | 1307/1827 [00:16<00:06, 82.39it/s]
|
1789 |
72%|███████▏ | 1316/1827 [00:16<00:06, 81.93it/s]
|
1790 |
73%|███████▎ | 1325/1827 [00:16<00:06, 79.75it/s]
|
1791 |
73%|███████▎ | 1334/1827 [00:16<00:06, 80.32it/s]
|
1792 |
74%|███████▎ | 1343/1827 [00:16<00:06, 79.81it/s]
|
1793 |
74%|███████▍ | 1351/1827 [00:16<00:05, 79.79it/s]
|
1794 |
74%|███████▍ | 1359/1827 [00:17<00:05, 79.73it/s]
|
1795 |
75%|███████▍ | 1368/1827 [00:17<00:05, 80.26it/s]
|
1796 |
75%|███████▌ | 1377/1827 [00:17<00:05, 79.57it/s]
|
1797 |
76%|███████▌ | 1386/1827 [00:17<00:05, 80.10it/s]
|
1798 |
76%|███████▋ | 1395/1827 [00:17<00:05, 79.37it/s]
|
1799 |
77%|███████▋ | 1404/1827 [00:17<00:05, 80.47it/s]
|
1800 |
77%|███████▋ | 1413/1827 [00:17<00:05, 80.08it/s]
|
1801 |
78%|███████▊ | 1422/1827 [00:17<00:05, 79.11it/s]
|
1802 |
78%|███████▊ | 1430/1827 [00:17<00:05, 77.31it/s]
|
1803 |
79%|███████▊ | 1438/1827 [00:18<00:05, 75.53it/s]
|
1804 |
79%|███████▉ | 1446/1827 [00:18<00:04, 76.28it/s]
|
1805 |
80%|███████▉ | 1455/1827 [00:18<00:04, 77.69it/s]
|
1806 |
80%|████████ | 1463/1827 [00:18<00:04, 77.56it/s]
|
1807 |
81%|████████ | 1471/1827 [00:18<00:04, 75.50it/s]
|
1808 |
81%|████████ | 1479/1827 [00:18<00:04, 75.70it/s]
|
1809 |
81%|████████▏ | 1487/1827 [00:18<00:04, 76.40it/s]
|
1810 |
82%|████████▏ | 1495/1827 [00:18<00:04, 74.59it/s]
|
1811 |
82%|████████▏ | 1503/1827 [00:18<00:04, 74.46it/s]
|
1812 |
83%|████████▎ | 1511/1827 [00:19<00:04, 76.02it/s]
|
1813 |
83%|████████▎ | 1520/1827 [00:19<00:03, 77.31it/s]
|
1814 |
84%|████████▎ | 1528/1827 [00:19<00:03, 77.21it/s]
|
1815 |
84%|████████▍ | 1536/1827 [00:19<00:03, 77.82it/s]
|
1816 |
85%|████████▍ | 1544/1827 [00:19<00:03, 78.06it/s]
|
1817 |
85%|████████▍ | 1552/1827 [00:19<00:03, 78.36it/s]
|
1818 |
85%|████████▌ | 1560/1827 [00:19<00:03, 78.42it/s]
|
1819 |
86%|████████▌ | 1568/1827 [00:19<00:03, 78.31it/s]
|
1820 |
86%|████████▋ | 1576/1827 [00:19<00:03, 77.83it/s]
|
1821 |
87%|████████▋ | 1584/1827 [00:19<00:03, 78.43it/s]
|
1822 |
87%|████████▋ | 1592/1827 [00:20<00:03, 78.12it/s]
|
1823 |
88%|████████▊ | 1600/1827 [00:20<00:02, 78.44it/s]
|
1824 |
88%|████████▊ | 1609/1827 [00:20<00:02, 79.26it/s]
|
1825 |
89%|████████▊ | 1617/1827 [00:20<00:02, 78.96it/s]
|
1826 |
89%|████████▉ | 1625/1827 [00:20<00:02, 73.35it/s]
|
1827 |
89%|████████▉ | 1633/1827 [00:20<00:02, 74.00it/s]
|
1828 |
90%|████████▉ | 1641/1827 [00:20<00:02, 75.00it/s]
|
1829 |
90%|█████████ | 1650/1827 [00:20<00:02, 76.76it/s]
|
1830 |
91%|█████████ | 1658/1827 [00:20<00:02, 76.99it/s]
|
1831 |
91%|█████████ | 1666/1827 [00:21<00:02, 76.77it/s]
|
1832 |
92%|█████████▏| 1674/1827 [00:21<00:01, 77.34it/s]
|
1833 |
92%|█████████▏| 1683/1827 [00:21<00:01, 78.69it/s]
|
1834 |
93%|█████████▎| 1692/1827 [00:21<00:01, 77.53it/s]
|
1835 |
93%|█████████▎| 1700/1827 [00:21<00:01, 77.18it/s]
|
1836 |
93%|█████████▎| 1708/1827 [00:21<00:01, 77.66it/s]
|
1837 |
94%|█████████▍| 1717/1827 [00:21<00:01, 78.89it/s]
|
1838 |
94%|█████████▍| 1725/1827 [00:21<00:01, 75.55it/s]
|
1839 |
95%|█████████▍| 1733/1827 [00:21<00:01, 76.47it/s]
|
1840 |
95%|█████████▌| 1741/1827 [00:21<00:01, 77.39it/s]
|
1841 |
96%|█████████▌| 1750/1827 [00:22<00:00, 79.17it/s]
|
1842 |
96%|█████████▌| 1758/1827 [00:22<00:00, 79.36it/s]
|
1843 |
97%|█████████▋| 1767/1827 [00:22<00:00, 80.84it/s]
|
1844 |
97%|█████████▋| 1776/1827 [00:22<00:00, 81.41it/s]
|
1845 |
98%|█████████▊| 1785/1827 [00:22<00:00, 82.37it/s]
|
1846 |
98%|█████████▊| 1794/1827 [00:22<00:00, 79.49it/s]
|
1847 |
99%|█████████▊| 1802/1827 [00:22<00:00, 79.48it/s]
|
1848 |
99%|█████████▉| 1810/1827 [00:22<00:00, 79.52it/s]
|
1849 |
+
[INFO|trainer.py:3503] 2024-09-06 00:35:54,295 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1850 |
+
[INFO|configuration_utils.py:472] 2024-09-06 00:35:54,297 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1851 |
+
[INFO|modeling_utils.py:2799] 2024-09-06 00:35:55,671 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1852 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-06 00:35:55,672 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1853 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-06 00:35:55,672 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1854 |
+
***** predict metrics *****
|
1855 |
+
predict_accuracy = 0.8712
|
1856 |
+
predict_f1 = 0.2297
|
1857 |
+
predict_loss = 0.7416
|
1858 |
+
predict_precision = 0.1307
|
1859 |
+
predict_recall = 0.9487
|
1860 |
+
predict_runtime = 0:00:29.78
|
1861 |
+
predict_samples_per_second = 490.651
|
1862 |
+
predict_steps_per_second = 61.34
|
1863 |
+
|
train_results.json
CHANGED
@@ -2,8 +2,8 @@
|
|
2 |
"epoch": 10.0,
|
3 |
"total_flos": 1.7176580067661056e+16,
|
4 |
"train_loss": 0.0812657987344287,
|
5 |
-
"train_runtime":
|
6 |
"train_samples": 34604,
|
7 |
-
"train_samples_per_second":
|
8 |
-
"train_steps_per_second": 3.
|
9 |
}
|
|
|
2 |
"epoch": 10.0,
|
3 |
"total_flos": 1.7176580067661056e+16,
|
4 |
"train_loss": 0.0812657987344287,
|
5 |
+
"train_runtime": 1542.5562,
|
6 |
"train_samples": 34604,
|
7 |
+
"train_samples_per_second": 224.329,
|
8 |
+
"train_steps_per_second": 3.507
|
9 |
}
|
trainer_state.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"best_metric": 0.
|
3 |
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2705",
|
4 |
"epoch": 10.0,
|
5 |
"eval_steps": 500,
|
@@ -17,14 +17,14 @@
|
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
-
"eval_accuracy": 0.
|
21 |
-
"eval_f1": 0.
|
22 |
-
"eval_loss": 0.
|
23 |
-
"eval_precision": 0.
|
24 |
-
"eval_recall": 0.
|
25 |
-
"eval_runtime": 14.
|
26 |
-
"eval_samples_per_second":
|
27 |
-
"eval_steps_per_second": 59.
|
28 |
"step": 541
|
29 |
},
|
30 |
{
|
@@ -36,14 +36,14 @@
|
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
-
"eval_accuracy": 0.
|
40 |
-
"eval_f1": 0.
|
41 |
-
"eval_loss": 0.
|
42 |
-
"eval_precision": 0.
|
43 |
-
"eval_recall": 0.
|
44 |
-
"eval_runtime": 14.
|
45 |
-
"eval_samples_per_second":
|
46 |
-
"eval_steps_per_second": 59.
|
47 |
"step": 1082
|
48 |
},
|
49 |
{
|
@@ -55,14 +55,14 @@
|
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
-
"eval_accuracy": 0.
|
59 |
-
"eval_f1": 0.
|
60 |
-
"eval_loss":
|
61 |
-
"eval_precision": 0.
|
62 |
-
"eval_recall": 0.
|
63 |
-
"eval_runtime": 14.
|
64 |
-
"eval_samples_per_second": 475.
|
65 |
-
"eval_steps_per_second": 59.
|
66 |
"step": 1623
|
67 |
},
|
68 |
{
|
@@ -74,14 +74,14 @@
|
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
-
"eval_accuracy": 0.
|
78 |
-
"eval_f1": 0.
|
79 |
-
"eval_loss":
|
80 |
-
"eval_precision": 0.
|
81 |
-
"eval_recall": 0.
|
82 |
-
"eval_runtime": 14.
|
83 |
-
"eval_samples_per_second":
|
84 |
-
"eval_steps_per_second":
|
85 |
"step": 2164
|
86 |
},
|
87 |
{
|
@@ -93,14 +93,14 @@
|
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
-
"eval_accuracy": 0.
|
97 |
-
"eval_f1": 0.
|
98 |
-
"eval_loss":
|
99 |
-
"eval_precision": 0.
|
100 |
-
"eval_recall": 0.
|
101 |
-
"eval_runtime": 14.
|
102 |
-
"eval_samples_per_second":
|
103 |
-
"eval_steps_per_second":
|
104 |
"step": 2705
|
105 |
},
|
106 |
{
|
@@ -112,14 +112,14 @@
|
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
-
"eval_accuracy": 0.
|
116 |
-
"eval_f1": 0.
|
117 |
-
"eval_loss":
|
118 |
-
"eval_precision": 0.
|
119 |
-
"eval_recall": 0.
|
120 |
-
"eval_runtime": 14.
|
121 |
-
"eval_samples_per_second":
|
122 |
-
"eval_steps_per_second":
|
123 |
"step": 3246
|
124 |
},
|
125 |
{
|
@@ -131,14 +131,14 @@
|
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
-
"eval_accuracy": 0.
|
135 |
-
"eval_f1": 0.
|
136 |
-
"eval_loss":
|
137 |
-
"eval_precision": 0.
|
138 |
-
"eval_recall": 0.
|
139 |
-
"eval_runtime": 14.
|
140 |
-
"eval_samples_per_second": 476.
|
141 |
-
"eval_steps_per_second": 59.
|
142 |
"step": 3787
|
143 |
},
|
144 |
{
|
@@ -150,14 +150,14 @@
|
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
-
"eval_accuracy": 0.
|
154 |
-
"eval_f1": 0.
|
155 |
-
"eval_loss":
|
156 |
-
"eval_precision": 0.
|
157 |
-
"eval_recall": 0.
|
158 |
-
"eval_runtime": 14.
|
159 |
-
"eval_samples_per_second":
|
160 |
-
"eval_steps_per_second":
|
161 |
"step": 4328
|
162 |
},
|
163 |
{
|
@@ -169,14 +169,14 @@
|
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
-
"eval_accuracy": 0.
|
173 |
-
"eval_f1": 0.
|
174 |
-
"eval_loss": 1.
|
175 |
-
"eval_precision": 0.
|
176 |
-
"eval_recall": 0.
|
177 |
-
"eval_runtime": 14.
|
178 |
-
"eval_samples_per_second":
|
179 |
-
"eval_steps_per_second":
|
180 |
"step": 4869
|
181 |
},
|
182 |
{
|
@@ -188,14 +188,14 @@
|
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
-
"eval_accuracy": 0.
|
192 |
-
"eval_f1": 0.
|
193 |
-
"eval_loss": 1.
|
194 |
-
"eval_precision": 0.
|
195 |
-
"eval_recall": 0.
|
196 |
-
"eval_runtime": 14.
|
197 |
-
"eval_samples_per_second":
|
198 |
-
"eval_steps_per_second": 58.
|
199 |
"step": 5410
|
200 |
},
|
201 |
{
|
@@ -203,9 +203,9 @@
|
|
203 |
"step": 5410,
|
204 |
"total_flos": 1.7176580067661056e+16,
|
205 |
"train_loss": 0.0812657987344287,
|
206 |
-
"train_runtime":
|
207 |
-
"train_samples_per_second":
|
208 |
-
"train_steps_per_second": 3.
|
209 |
}
|
210 |
],
|
211 |
"logging_steps": 500,
|
|
|
1 |
{
|
2 |
+
"best_metric": 0.17114591920857378,
|
3 |
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2705",
|
4 |
"epoch": 10.0,
|
5 |
"eval_steps": 500,
|
|
|
17 |
},
|
18 |
{
|
19 |
"epoch": 1.0,
|
20 |
+
"eval_accuracy": 0.7762986255097697,
|
21 |
+
"eval_f1": 0.15197789412449098,
|
22 |
+
"eval_loss": 0.815065860748291,
|
23 |
+
"eval_precision": 0.08251737207833228,
|
24 |
+
"eval_recall": 0.9604779411764706,
|
25 |
+
"eval_runtime": 14.2875,
|
26 |
+
"eval_samples_per_second": 476.64,
|
27 |
+
"eval_steps_per_second": 59.632,
|
28 |
"step": 541
|
29 |
},
|
30 |
{
|
|
|
36 |
},
|
37 |
{
|
38 |
"epoch": 2.0,
|
39 |
+
"eval_accuracy": 0.7900778557403161,
|
40 |
+
"eval_f1": 0.168,
|
41 |
+
"eval_loss": 0.833220362663269,
|
42 |
+
"eval_precision": 0.09218777996774771,
|
43 |
+
"eval_recall": 0.9457720588235294,
|
44 |
+
"eval_runtime": 14.245,
|
45 |
+
"eval_samples_per_second": 478.064,
|
46 |
+
"eval_steps_per_second": 59.811,
|
47 |
"step": 1082
|
48 |
},
|
49 |
{
|
|
|
55 |
},
|
56 |
{
|
57 |
"epoch": 3.0,
|
58 |
+
"eval_accuracy": 0.7738201491205184,
|
59 |
+
"eval_f1": 0.16426810845193607,
|
60 |
+
"eval_loss": 1.1093989610671997,
|
61 |
+
"eval_precision": 0.08991208982505004,
|
62 |
+
"eval_recall": 0.9494485294117647,
|
63 |
+
"eval_runtime": 14.3321,
|
64 |
+
"eval_samples_per_second": 475.159,
|
65 |
+
"eval_steps_per_second": 59.447,
|
66 |
"step": 1623
|
67 |
},
|
68 |
{
|
|
|
74 |
},
|
75 |
{
|
76 |
"epoch": 4.0,
|
77 |
+
"eval_accuracy": 0.7740055199307949,
|
78 |
+
"eval_f1": 0.16182605273514364,
|
79 |
+
"eval_loss": 1.1206157207489014,
|
80 |
+
"eval_precision": 0.08849100456227942,
|
81 |
+
"eval_recall": 0.9448529411764706,
|
82 |
+
"eval_runtime": 14.4251,
|
83 |
+
"eval_samples_per_second": 472.092,
|
84 |
+
"eval_steps_per_second": 59.064,
|
85 |
"step": 2164
|
86 |
},
|
87 |
{
|
|
|
93 |
},
|
94 |
{
|
95 |
"epoch": 5.0,
|
96 |
+
"eval_accuracy": 0.7890274211487498,
|
97 |
+
"eval_f1": 0.17114591920857378,
|
98 |
+
"eval_loss": 1.1805996894836426,
|
99 |
+
"eval_precision": 0.09400470929179497,
|
100 |
+
"eval_recall": 0.9540441176470589,
|
101 |
+
"eval_runtime": 14.1983,
|
102 |
+
"eval_samples_per_second": 479.634,
|
103 |
+
"eval_steps_per_second": 60.007,
|
104 |
"step": 2705
|
105 |
},
|
106 |
{
|
|
|
112 |
},
|
113 |
{
|
114 |
"epoch": 6.0,
|
115 |
+
"eval_accuracy": 0.7827454103560493,
|
116 |
+
"eval_f1": 0.1644558094933674,
|
117 |
+
"eval_loss": 1.31381094455719,
|
118 |
+
"eval_precision": 0.09005776299667426,
|
119 |
+
"eval_recall": 0.9457720588235294,
|
120 |
+
"eval_runtime": 14.1863,
|
121 |
+
"eval_samples_per_second": 480.042,
|
122 |
+
"eval_steps_per_second": 60.058,
|
123 |
"step": 3246
|
124 |
},
|
125 |
{
|
|
|
131 |
},
|
132 |
{
|
133 |
"epoch": 7.0,
|
134 |
+
"eval_accuracy": 0.7874071429552226,
|
135 |
+
"eval_f1": 0.16785861076859843,
|
136 |
+
"eval_loss": 1.4008890390396118,
|
137 |
+
"eval_precision": 0.09217297102103457,
|
138 |
+
"eval_recall": 0.9384191176470589,
|
139 |
+
"eval_runtime": 14.2845,
|
140 |
+
"eval_samples_per_second": 476.742,
|
141 |
+
"eval_steps_per_second": 59.645,
|
142 |
"step": 3787
|
143 |
},
|
144 |
{
|
|
|
150 |
},
|
151 |
{
|
152 |
"epoch": 8.0,
|
153 |
+
"eval_accuracy": 0.7790997844206132,
|
154 |
+
"eval_f1": 0.16497502819397453,
|
155 |
+
"eval_loss": 1.5610512495040894,
|
156 |
+
"eval_precision": 0.0904114426982165,
|
157 |
+
"eval_recall": 0.9411764705882353,
|
158 |
+
"eval_runtime": 14.5465,
|
159 |
+
"eval_samples_per_second": 468.153,
|
160 |
+
"eval_steps_per_second": 58.571,
|
161 |
"step": 4328
|
162 |
},
|
163 |
{
|
|
|
169 |
},
|
170 |
{
|
171 |
"epoch": 9.0,
|
172 |
+
"eval_accuracy": 0.7835212215249838,
|
173 |
+
"eval_f1": 0.16788916055419725,
|
174 |
+
"eval_loss": 1.5933887958526611,
|
175 |
+
"eval_precision": 0.09211232337685567,
|
176 |
+
"eval_recall": 0.9466911764705882,
|
177 |
+
"eval_runtime": 14.1983,
|
178 |
+
"eval_samples_per_second": 479.635,
|
179 |
+
"eval_steps_per_second": 60.007,
|
180 |
"step": 4869
|
181 |
},
|
182 |
{
|
|
|
188 |
},
|
189 |
{
|
190 |
"epoch": 10.0,
|
191 |
+
"eval_accuracy": 0.7862743213368668,
|
192 |
+
"eval_f1": 0.16804385175488834,
|
193 |
+
"eval_loss": 1.6103088855743408,
|
194 |
+
"eval_precision": 0.09223170184104176,
|
195 |
+
"eval_recall": 0.9439338235294118,
|
196 |
+
"eval_runtime": 14.5612,
|
197 |
+
"eval_samples_per_second": 467.681,
|
198 |
+
"eval_steps_per_second": 58.512,
|
199 |
"step": 5410
|
200 |
},
|
201 |
{
|
|
|
203 |
"step": 5410,
|
204 |
"total_flos": 1.7176580067661056e+16,
|
205 |
"train_loss": 0.0812657987344287,
|
206 |
+
"train_runtime": 1542.5562,
|
207 |
+
"train_samples_per_second": 224.329,
|
208 |
+
"train_steps_per_second": 3.507
|
209 |
}
|
210 |
],
|
211 |
"logging_steps": 500,
|