Rodrigo1771 commited on
Commit
e85d1ad
1 Parent(s): aaf5794

End of training

Browse files
README.md CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
  tags:
 
6
  - generated_from_trainer
7
  datasets:
8
- - combined-train-drugtemist-dev-85-ner
9
  metrics:
10
  - precision
11
  - recall
@@ -18,24 +19,24 @@ model-index:
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
- name: combined-train-drugtemist-dev-85-ner
22
- type: combined-train-drugtemist-dev-85-ner
23
  config: CombinedTrainDrugTEMISTDevNER
24
  split: validation
25
  args: CombinedTrainDrugTEMISTDevNER
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.09223170184104176
30
  - name: Recall
31
  type: recall
32
- value: 0.9439338235294118
33
  - name: F1
34
  type: f1
35
- value: 0.16804385175488834
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.7862743213368668
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,13 +44,13 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # output
45
 
46
- This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the combined-train-drugtemist-dev-85-ner dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 1.6103
49
- - Precision: 0.0922
50
- - Recall: 0.9439
51
- - F1: 0.1680
52
- - Accuracy: 0.7863
53
 
54
  ## Model description
55
 
 
3
  license: apache-2.0
4
  base_model: PlanTL-GOB-ES/bsc-bio-ehr-es
5
  tags:
6
+ - token-classification
7
  - generated_from_trainer
8
  datasets:
9
+ - Rodrigo1771/combined-train-drugtemist-dev-85-ner
10
  metrics:
11
  - precision
12
  - recall
 
19
  name: Token Classification
20
  type: token-classification
21
  dataset:
22
+ name: Rodrigo1771/combined-train-drugtemist-dev-85-ner
23
+ type: Rodrigo1771/combined-train-drugtemist-dev-85-ner
24
  config: CombinedTrainDrugTEMISTDevNER
25
  split: validation
26
  args: CombinedTrainDrugTEMISTDevNER
27
  metrics:
28
  - name: Precision
29
  type: precision
30
+ value: 0.09400470929179497
31
  - name: Recall
32
  type: recall
33
+ value: 0.9540441176470589
34
  - name: F1
35
  type: f1
36
+ value: 0.17114591920857378
37
  - name: Accuracy
38
  type: accuracy
39
+ value: 0.7890274211487498
40
  ---
41
 
42
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  # output
46
 
47
+ This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/combined-train-drugtemist-dev-85-ner dataset.
48
  It achieves the following results on the evaluation set:
49
+ - Loss: 1.1806
50
+ - Precision: 0.0940
51
+ - Recall: 0.9540
52
+ - F1: 0.1711
53
+ - Accuracy: 0.7890
54
 
55
  ## Model description
56
 
all_results.json CHANGED
@@ -1,26 +1,26 @@
1
  {
2
  "epoch": 10.0,
3
- "eval_accuracy": 0.8564886649182308,
4
- "eval_f1": 0.45455732567249935,
5
- "eval_loss": 0.7005925178527832,
6
- "eval_precision": 0.3152508603513856,
7
- "eval_recall": 0.8144595226953674,
8
- "eval_runtime": 14.2934,
9
  "eval_samples": 6810,
10
- "eval_samples_per_second": 476.445,
11
- "eval_steps_per_second": 59.608,
12
- "predict_accuracy": 0.9437946603149774,
13
- "predict_f1": 0.6365870441364396,
14
- "predict_loss": 0.22766011953353882,
15
- "predict_precision": 0.519576379974326,
16
- "predict_recall": 0.8216188784572444,
17
- "predict_runtime": 29.1056,
18
- "predict_samples_per_second": 502.103,
19
- "predict_steps_per_second": 62.771,
20
  "total_flos": 1.7176580067661056e+16,
21
  "train_loss": 0.0812657987344287,
22
- "train_runtime": 1549.44,
23
  "train_samples": 34604,
24
- "train_samples_per_second": 223.332,
25
- "train_steps_per_second": 3.492
26
  }
 
1
  {
2
  "epoch": 10.0,
3
+ "eval_accuracy": 0.7890274211487498,
4
+ "eval_f1": 0.17114591920857378,
5
+ "eval_loss": 1.1805996894836426,
6
+ "eval_precision": 0.09400470929179497,
7
+ "eval_recall": 0.9540441176470589,
8
+ "eval_runtime": 14.5104,
9
  "eval_samples": 6810,
10
+ "eval_samples_per_second": 469.318,
11
+ "eval_steps_per_second": 58.716,
12
+ "predict_accuracy": 0.8712439909780733,
13
+ "predict_f1": 0.22974402369367464,
14
+ "predict_loss": 0.7416015267372131,
15
+ "predict_precision": 0.130696405648267,
16
+ "predict_recall": 0.9487478159580663,
17
+ "predict_runtime": 29.7849,
18
+ "predict_samples_per_second": 490.651,
19
+ "predict_steps_per_second": 61.34,
20
  "total_flos": 1.7176580067661056e+16,
21
  "train_loss": 0.0812657987344287,
22
+ "train_runtime": 1542.5562,
23
  "train_samples": 34604,
24
+ "train_samples_per_second": 224.329,
25
+ "train_steps_per_second": 3.507
26
  }
eval_results.json CHANGED
@@ -1,12 +1,12 @@
1
  {
2
  "epoch": 10.0,
3
- "eval_accuracy": 0.8564886649182308,
4
- "eval_f1": 0.45455732567249935,
5
- "eval_loss": 0.7005925178527832,
6
- "eval_precision": 0.3152508603513856,
7
- "eval_recall": 0.8144595226953674,
8
- "eval_runtime": 14.2934,
9
  "eval_samples": 6810,
10
- "eval_samples_per_second": 476.445,
11
- "eval_steps_per_second": 59.608
12
  }
 
1
  {
2
  "epoch": 10.0,
3
+ "eval_accuracy": 0.7890274211487498,
4
+ "eval_f1": 0.17114591920857378,
5
+ "eval_loss": 1.1805996894836426,
6
+ "eval_precision": 0.09400470929179497,
7
+ "eval_recall": 0.9540441176470589,
8
+ "eval_runtime": 14.5104,
9
  "eval_samples": 6810,
10
+ "eval_samples_per_second": 469.318,
11
+ "eval_steps_per_second": 58.716
12
  }
predict_results.json CHANGED
@@ -1,10 +1,10 @@
1
  {
2
- "predict_accuracy": 0.9437946603149774,
3
- "predict_f1": 0.6365870441364396,
4
- "predict_loss": 0.22766011953353882,
5
- "predict_precision": 0.519576379974326,
6
- "predict_recall": 0.8216188784572444,
7
- "predict_runtime": 29.1056,
8
- "predict_samples_per_second": 502.103,
9
- "predict_steps_per_second": 62.771
10
  }
 
1
  {
2
+ "predict_accuracy": 0.8712439909780733,
3
+ "predict_f1": 0.22974402369367464,
4
+ "predict_loss": 0.7416015267372131,
5
+ "predict_precision": 0.130696405648267,
6
+ "predict_recall": 0.9487478159580663,
7
+ "predict_runtime": 29.7849,
8
+ "predict_samples_per_second": 490.651,
9
+ "predict_steps_per_second": 61.34
10
  }
tb/events.out.tfevents.1725582923.2a66098fac87.23851.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec2dc4fe260f4b1afdfb552850a0337582e07d058a8812069b094e4c853b8cac
3
+ size 560
train.log CHANGED
@@ -1501,3 +1501,53 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1501
  {'eval_loss': 1.6103088855743408, 'eval_precision': 0.09223170184104176, 'eval_recall': 0.9439338235294118, 'eval_f1': 0.16804385175488834, 'eval_accuracy': 0.7862743213368668, 'eval_runtime': 14.5612, 'eval_samples_per_second': 467.681, 'eval_steps_per_second': 58.512, 'epoch': 10.0}
1502
  {'train_runtime': 1542.5562, 'train_samples_per_second': 224.329, 'train_steps_per_second': 3.507, 'train_loss': 0.0812657987344287, 'epoch': 10.0}
1503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1504
  0%| | 0/852 [00:00<?, ?it/s]
1505
  1%| | 10/852 [00:00<00:09, 89.32it/s]
1506
  2%|▏ | 19/852 [00:00<00:10, 77.68it/s]
1507
  3%|▎ | 27/852 [00:00<00:10, 77.19it/s]
1508
  4%|▍ | 35/852 [00:00<00:10, 77.86it/s]
1509
  5%|▌ | 44/852 [00:00<00:10, 79.22it/s]
1510
  6%|▌ | 53/852 [00:00<00:09, 80.49it/s]
1511
  7%|▋ | 62/852 [00:00<00:09, 81.06it/s]
1512
  8%|▊ | 71/852 [00:00<00:09, 78.26it/s]
1513
  9%|▉ | 80/852 [00:01<00:09, 78.24it/s]
1514
  10%|█ | 89/852 [00:01<00:09, 78.87it/s]
1515
  11%|█▏ | 97/852 [00:01<00:09, 78.68it/s]
1516
  12%|█▏ | 106/852 [00:01<00:09, 79.83it/s]
1517
  13%|█▎ | 114/852 [00:01<00:09, 79.66it/s]
1518
  14%|█▍ | 123/852 [00:01<00:09, 80.84it/s]
1519
  15%|█▌ | 132/852 [00:01<00:09, 76.65it/s]
1520
  16%|█▋ | 140/852 [00:01<00:09, 76.74it/s]
1521
  17%|█▋ | 148/852 [00:01<00:09, 76.37it/s]
1522
  18%|█▊ | 156/852 [00:01<00:09, 77.14it/s]
1523
  19%|█▉ | 164/852 [00:02<00:08, 77.82it/s]
1524
  20%|██ | 172/852 [00:02<00:08, 77.95it/s]
1525
  21%|██ | 180/852 [00:02<00:08, 76.88it/s]
1526
  22%|██▏ | 188/852 [00:02<00:08, 77.69it/s]
1527
  23%|██▎ | 196/852 [00:02<00:08, 77.62it/s]
1528
  24%|██▍ | 205/852 [00:02<00:08, 78.72it/s]
1529
  25%|██▌ | 213/852 [00:02<00:08, 77.59it/s]
1530
  26%|██▌ | 221/852 [00:02<00:08, 76.68it/s]
1531
  27%|██▋ | 230/852 [00:02<00:07, 77.89it/s]
1532
  28%|██▊ | 238/852 [00:03<00:07, 77.24it/s]
1533
  29%|██▉ | 246/852 [00:03<00:07, 75.97it/s]
1534
  30%|██▉ | 255/852 [00:03<00:07, 78.31it/s]
1535
  31%|███ | 264/852 [00:03<00:07, 79.83it/s]
1536
  32%|███▏ | 272/852 [00:03<00:07, 79.08it/s]
1537
  33%|███▎ | 281/852 [00:03<00:07, 80.99it/s]
1538
  34%|███▍ | 290/852 [00:03<00:07, 79.72it/s]
1539
  35%|███▍ | 298/852 [00:03<00:06, 79.60it/s]
1540
  36%|███▌ | 307/852 [00:03<00:06, 80.29it/s]
1541
  37%|███▋ | 316/852 [00:04<00:06, 78.10it/s]
1542
  38%|███▊ | 324/852 [00:04<00:06, 78.24it/s]
1543
  39%|███▉ | 332/852 [00:04<00:06, 77.89it/s]
1544
  40%|████ | 341/852 [00:04<00:06, 79.08it/s]
1545
  41%|████ | 350/852 [00:04<00:06, 79.99it/s]
1546
  42%|████▏ | 359/852 [00:04<00:06, 78.18it/s]
1547
  43%|████▎ | 368/852 [00:04<00:06, 79.04it/s]
1548
  44%|████▍ | 377/852 [00:04<00:05, 79.49it/s]
1549
  45%|████▌ | 385/852 [00:04<00:05, 78.76it/s]
1550
  46%|████▌ | 394/852 [00:05<00:05, 79.43it/s]
1551
  47%|████▋ | 402/852 [00:05<00:05, 79.23it/s]
1552
  48%|████▊ | 410/852 [00:05<00:05, 77.00it/s]
1553
  49%|████▉ | 418/852 [00:05<00:05, 77.80it/s]
1554
  50%|█████ | 426/852 [00:05<00:05, 76.10it/s]
1555
  51%|█████ | 435/852 [00:05<00:05, 77.97it/s]
1556
  52%|█████▏ | 444/852 [00:05<00:05, 79.13it/s]
1557
  53%|█████▎ | 453/852 [00:05<00:04, 79.97it/s]
1558
  54%|█████▍ | 461/852 [00:05<00:05, 77.94it/s]
1559
  55%|█████▌ | 469/852 [00:05<00:04, 77.33it/s]
1560
  56%|█████▌ | 477/852 [00:06<00:05, 74.29it/s]
1561
  57%|█████▋ | 485/852 [00:06<00:04, 74.32it/s]
1562
  58%|█████▊ | 494/852 [00:06<00:04, 76.20it/s]
1563
  59%|█████▉ | 503/852 [00:06<00:04, 77.78it/s]
1564
  60%|█████▉ | 511/852 [00:06<00:04, 77.92it/s]
1565
  61%|██████ | 520/852 [00:06<00:04, 79.03it/s]
1566
  62%|██████▏ | 528/852 [00:06<00:04, 77.15it/s]
1567
  63%|██████▎ | 537/852 [00:06<00:03, 79.37it/s]
1568
  64%|██████▍ | 546/852 [00:06<00:03, 80.04it/s]
1569
  65%|██████▌ | 555/852 [00:07<00:03, 77.62it/s]
1570
  66%|██████▌ | 564/852 [00:07<00:03, 78.59it/s]
1571
  67%|██████▋ | 572/852 [00:07<00:03, 78.53it/s]
1572
  68%|██████▊ | 580/852 [00:07<00:03, 78.15it/s]
1573
  69%|██████▉ | 588/852 [00:07<00:03, 77.41it/s]
1574
  70%|███████ | 597/852 [00:07<00:03, 78.12it/s]
1575
  71%|███████ | 605/852 [00:07<00:03, 73.52it/s]
1576
  72%|███████▏ | 613/852 [00:07<00:03, 74.71it/s]
1577
  73%|███████▎ | 621/852 [00:07<00:03, 75.59it/s]
1578
  74%|███████▍ | 629/852 [00:08<00:02, 74.68it/s]
1579
  75%|███████▍ | 638/852 [00:08<00:02, 76.62it/s]
1580
  76%|███████▌ | 646/852 [00:08<00:02, 74.33it/s]
1581
  77%|███████▋ | 655/852 [00:08<00:02, 77.01it/s]
1582
  78%|███████▊ | 663/852 [00:08<00:02, 77.50it/s]
1583
  79%|███████▉ | 671/852 [00:08<00:02, 77.95it/s]
1584
  80%|███████▉ | 680/852 [00:08<00:02, 78.57it/s]
1585
  81%|████████ | 689/852 [00:08<00:02, 80.07it/s]
1586
  82%|████████▏ | 698/852 [00:08<00:01, 80.51it/s]
1587
  83%|████████▎ | 707/852 [00:09<00:01, 81.55it/s]
1588
  84%|████████▍ | 716/852 [00:09<00:01, 81.02it/s]
1589
  85%|████████▌ | 725/852 [00:09<00:01, 80.67it/s]
1590
  86%|████████▌ | 734/852 [00:09<00:01, 81.53it/s]
1591
  87%|████████▋ | 743/852 [00:09<00:01, 81.13it/s]
1592
  88%|████████▊ | 752/852 [00:09<00:01, 80.94it/s]
1593
  89%|████████▉ | 761/852 [00:09<00:01, 82.18it/s]
1594
  90%|█████████ | 770/852 [00:09<00:01, 80.71it/s]
1595
  91%|█████████▏| 779/852 [00:09<00:00, 80.08it/s]
1596
  92%|█████████▏| 788/852 [00:10<00:00, 79.00it/s]
1597
  93%|█████████▎| 796/852 [00:10<00:00, 79.25it/s]
1598
  94%|█████████▍| 805/852 [00:10<00:00, 79.61it/s]
1599
  95%|█████████▌| 813/852 [00:10<00:00, 77.98it/s]
1600
  96%|█████████▋| 822/852 [00:10<00:00, 79.28it/s]
1601
  98%|█████████▊| 831/852 [00:10<00:00, 80.44it/s]
1602
  99%|█████████▊| 840/852 [00:10<00:00, 79.45it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1603
  0%| | 0/1827 [00:00<?, ?it/s]
1604
  1%| | 10/1827 [00:00<00:21, 86.39it/s]
1605
  1%| | 19/1827 [00:00<00:23, 76.76it/s]
1606
  1%|▏ | 27/1827 [00:00<00:23, 77.35it/s]
1607
  2%|▏ | 35/1827 [00:00<00:23, 76.72it/s]
1608
  2%|▏ | 44/1827 [00:00<00:22, 78.12it/s]
1609
  3%|▎ | 52/1827 [00:00<00:22, 77.86it/s]
1610
  3%|▎ | 60/1827 [00:00<00:23, 75.65it/s]
1611
  4%|▍ | 69/1827 [00:00<00:22, 77.33it/s]
1612
  4%|▍ | 78/1827 [00:00<00:22, 79.22it/s]
1613
  5%|▍ | 86/1827 [00:01<00:22, 77.72it/s]
1614
  5%|▌ | 95/1827 [00:01<00:21, 78.74it/s]
1615
  6%|▌ | 104/1827 [00:01<00:21, 80.10it/s]
1616
  6%|▌ | 113/1827 [00:01<00:21, 80.17it/s]
1617
  7%|▋ | 122/1827 [00:01<00:21, 78.09it/s]
1618
  7%|▋ | 130/1827 [00:01<00:21, 77.56it/s]
1619
  8%|▊ | 139/1827 [00:01<00:21, 79.53it/s]
1620
  8%|▊ | 148/1827 [00:01<00:20, 80.02it/s]
1621
  9%|▊ | 157/1827 [00:02<00:21, 77.61it/s]
1622
  9%|▉ | 166/1827 [00:02<00:21, 78.42it/s]
1623
  10%|▉ | 174/1827 [00:02<00:21, 78.59it/s]
1624
  10%|█ | 183/1827 [00:02<00:20, 80.08it/s]
1625
  11%|█ | 192/1827 [00:02<00:20, 80.24it/s]
1626
  11%|█ | 201/1827 [00:02<00:20, 78.80it/s]
1627
  11%|█▏ | 210/1827 [00:02<00:20, 79.79it/s]
1628
  12%|█▏ | 218/1827 [00:02<00:20, 79.07it/s]
1629
  12%|█▏ | 227/1827 [00:02<00:19, 80.02it/s]
1630
  13%|█▎ | 236/1827 [00:03<00:20, 77.94it/s]
1631
  13%|█▎ | 245/1827 [00:03<00:19, 79.46it/s]
1632
  14%|█▍ | 253/1827 [00:03<00:19, 79.43it/s]
1633
  14%|█▍ | 261/1827 [00:03<00:19, 79.16it/s]
1634
  15%|█▍ | 270/1827 [00:03<00:19, 80.39it/s]
1635
  15%|█▌ | 279/1827 [00:03<00:18, 81.75it/s]
1636
  16%|█▌ | 288/1827 [00:03<00:18, 81.38it/s]
1637
  16%|█▋ | 297/1827 [00:03<00:18, 82.03it/s]
1638
  17%|█▋ | 306/1827 [00:03<00:18, 80.70it/s]
1639
  17%|█▋ | 315/1827 [00:03<00:18, 81.67it/s]
1640
  18%|█▊ | 324/1827 [00:04<00:18, 81.89it/s]
1641
  18%|█▊ | 333/1827 [00:04<00:18, 81.13it/s]
1642
  19%|█▊ | 342/1827 [00:04<00:18, 82.33it/s]
1643
  19%|█▉ | 351/1827 [00:04<00:18, 77.88it/s]
1644
  20%|█▉ | 360/1827 [00:04<00:18, 79.12it/s]
1645
  20%|██ | 369/1827 [00:04<00:18, 80.42it/s]
1646
  21%|██ | 378/1827 [00:04<00:17, 81.01it/s]
1647
  21%|██ | 387/1827 [00:04<00:17, 80.82it/s]
1648
  22%|██▏ | 396/1827 [00:04<00:17, 80.20it/s]
1649
  22%|██▏ | 405/1827 [00:05<00:17, 81.70it/s]
1650
  23%|██▎ | 414/1827 [00:05<00:17, 79.66it/s]
1651
  23%|██▎ | 423/1827 [00:05<00:17, 81.14it/s]
1652
  24%|██▎ | 432/1827 [00:05<00:17, 79.99it/s]
1653
  24%|██▍ | 441/1827 [00:05<00:17, 79.76it/s]
1654
  25%|██▍ | 449/1827 [00:05<00:17, 79.62it/s]
1655
  25%|██▌ | 458/1827 [00:05<00:17, 80.43it/s]
1656
  26%|██▌ | 467/1827 [00:05<00:16, 81.29it/s]
1657
  26%|██▌ | 476/1827 [00:05<00:17, 78.86it/s]
1658
  26%|██▋ | 484/1827 [00:06<00:17, 78.63it/s]
1659
  27%|██▋ | 492/1827 [00:06<00:17, 77.21it/s]
1660
  27%|██▋ | 500/1827 [00:06<00:17, 77.67it/s]
1661
  28%|██▊ | 508/1827 [00:06<00:16, 77.96it/s]
1662
  28%|██▊ | 516/1827 [00:06<00:16, 78.33it/s]
1663
  29%|██▊ | 525/1827 [00:06<00:16, 79.91it/s]
1664
  29%|██▉ | 533/1827 [00:06<00:16, 78.68it/s]
1665
  30%|██▉ | 542/1827 [00:06<00:16, 79.19it/s]
1666
  30%|███ | 550/1827 [00:06<00:16, 78.85it/s]
1667
  31%|███ | 558/1827 [00:07<00:16, 78.22it/s]
1668
  31%|███ | 566/1827 [00:07<00:16, 78.72it/s]
1669
  31%|███▏ | 575/1827 [00:07<00:15, 80.21it/s]
1670
  32%|███▏ | 584/1827 [00:07<00:15, 78.95it/s]
1671
  32%|███▏ | 593/1827 [00:07<00:15, 79.34it/s]
1672
  33%|███▎ | 601/1827 [00:07<00:15, 79.41it/s]
1673
  33%|███▎ | 609/1827 [00:07<00:15, 77.56it/s]
1674
  34%|███▍ | 617/1827 [00:07<00:15, 77.74it/s]
1675
  34%|███▍ | 626/1827 [00:07<00:15, 78.70it/s]
1676
  35%|███▍ | 634/1827 [00:07<00:15, 78.98it/s]
1677
  35%|███▌ | 643/1827 [00:08<00:14, 79.92it/s]
1678
  36%|███▌ | 651/1827 [00:08<00:15, 75.14it/s]
1679
  36%|███▌ | 659/1827 [00:08<00:15, 75.62it/s]
1680
  37%|███▋ | 668/1827 [00:08<00:14, 77.65it/s]
1681
  37%|███▋ | 676/1827 [00:08<00:14, 77.24it/s]
1682
  37%|███▋ | 684/1827 [00:08<00:14, 77.46it/s]
1683
  38%|███▊ | 693/1827 [00:08<00:14, 79.15it/s]
1684
  38%|███▊ | 701/1827 [00:08<00:14, 78.98it/s]
1685
  39%|███▉ | 710/1827 [00:08<00:13, 80.68it/s]
1686
  39%|███▉ | 719/1827 [00:09<00:13, 82.04it/s]
1687
  40%|███▉ | 728/1827 [00:09<00:13, 82.63it/s]
1688
  40%|████ | 737/1827 [00:09<00:13, 82.07it/s]
1689
  41%|████ | 746/1827 [00:09<00:13, 82.50it/s]
1690
  41%|████▏ | 755/1827 [00:09<00:12, 83.02it/s]
1691
  42%|████▏ | 764/1827 [00:09<00:12, 82.22it/s]
1692
  42%|████▏ | 773/1827 [00:09<00:12, 81.23it/s]
1693
  43%|████▎ | 782/1827 [00:09<00:13, 79.31it/s]
1694
  43%|████▎ | 791/1827 [00:09<00:12, 80.00it/s]
1695
  44%|████▍ | 800/1827 [00:10<00:12, 79.01it/s]
1696
  44%|████▍ | 809/1827 [00:10<00:12, 80.15it/s]
1697
  45%|████▍ | 818/1827 [00:10<00:12, 79.71it/s]
1698
  45%|████▌ | 827/1827 [00:10<00:12, 80.88it/s]
1699
  46%|████▌ | 836/1827 [00:10<00:12, 79.73it/s]
1700
  46%|████▋ | 845/1827 [00:10<00:12, 80.84it/s]
1701
  47%|████▋ | 854/1827 [00:10<00:11, 81.23it/s]
1702
  47%|████▋ | 863/1827 [00:10<00:11, 81.73it/s]
1703
  48%|████▊ | 872/1827 [00:10<00:11, 81.75it/s]
1704
  48%|████▊ | 881/1827 [00:11<00:11, 81.62it/s]
1705
  49%|████▊ | 890/1827 [00:11<00:11, 81.91it/s]
1706
  49%|████▉ | 899/1827 [00:11<00:11, 81.83it/s]
1707
  50%|████▉ | 908/1827 [00:11<00:11, 81.18it/s]
1708
  50%|█████ | 917/1827 [00:11<00:11, 81.62it/s]
1709
  51%|█████ | 926/1827 [00:11<00:11, 80.27it/s]
1710
  51%|█████ | 935/1827 [00:11<00:11, 77.20it/s]
1711
  52%|█████▏ | 943/1827 [00:11<00:11, 77.54it/s]
1712
  52%|█████▏ | 951/1827 [00:11<00:11, 76.33it/s]
1713
  52%|█████▏ | 959/1827 [00:12<00:11, 76.78it/s]
1714
  53%|█████▎ | 967/1827 [00:12<00:11, 77.61it/s]
1715
  53%|█████▎ | 975/1827 [00:12<00:11, 76.48it/s]
1716
  54%|█████▍ | 983/1827 [00:12<00:11, 76.46it/s]
1717
  54%|█████▍ | 991/1827 [00:12<00:10, 76.57it/s]
1718
  55%|█████▍ | 999/1827 [00:12<00:10, 77.28it/s]
1719
  55%|█████▌ | 1007/1827 [00:12<00:10, 76.62it/s]
1720
  56%|█████▌ | 1015/1827 [00:12<00:10, 77.11it/s]
1721
  56%|█████▌ | 1023/1827 [00:12<00:10, 77.82it/s]
1722
  56%|█████▋ | 1032/1827 [00:13<00:10, 78.52it/s]
1723
  57%|█████▋ | 1040/1827 [00:13<00:10, 77.02it/s]
1724
  57%|█████▋ | 1048/1827 [00:13<00:10, 77.36it/s]
1725
  58%|█████▊ | 1056/1827 [00:13<00:09, 77.94it/s]
1726
  58%|█████▊ | 1065/1827 [00:13<00:09, 79.46it/s]
1727
  59%|█████▉ | 1074/1827 [00:13<00:09, 80.78it/s]
1728
  59%|█████▉ | 1083/1827 [00:13<00:09, 81.47it/s]
1729
  60%|█████▉ | 1092/1827 [00:13<00:08, 81.99it/s]
1730
  60%|██████ | 1101/1827 [00:13<00:08, 82.35it/s]
1731
  61%|██████ | 1110/1827 [00:13<00:08, 81.93it/s]
1732
  61%|██████ | 1119/1827 [00:14<00:08, 81.44it/s]
1733
  62%|██████▏ | 1128/1827 [00:14<00:08, 81.89it/s]
1734
  62%|██████▏ | 1137/1827 [00:14<00:08, 82.95it/s]
1735
  63%|██████▎ | 1146/1827 [00:14<00:08, 83.37it/s]
1736
  63%|██████▎ | 1155/1827 [00:14<00:08, 83.36it/s]
1737
  64%|██████▎ | 1164/1827 [00:14<00:08, 80.93it/s]
1738
  64%|██████▍ | 1173/1827 [00:14<00:08, 81.26it/s]
1739
  65%|██████▍ | 1182/1827 [00:14<00:08, 79.25it/s]
1740
  65%|██████▌ | 1191/1827 [00:14<00:07, 79.98it/s]
1741
  66%|██████▌ | 1200/1827 [00:15<00:07, 80.51it/s]
1742
  66%|██████▌ | 1209/1827 [00:15<00:07, 80.69it/s]
1743
  67%|██████▋ | 1218/1827 [00:15<00:07, 79.18it/s]
1744
  67%|██████▋ | 1227/1827 [00:15<00:07, 80.18it/s]
1745
  68%|██████▊ | 1236/1827 [00:15<00:07, 80.99it/s]
1746
  68%|██████▊ | 1245/1827 [00:15<00:07, 81.49it/s]
1747
  69%|██████▊ | 1254/1827 [00:15<00:07, 78.96it/s]
1748
  69%|██████▉ | 1262/1827 [00:15<00:07, 78.04it/s]
1749
  70%|██████▉ | 1271/1827 [00:15<00:06, 79.53it/s]
1750
  70%|███████ | 1280/1827 [00:16<00:06, 80.75it/s]
1751
  71%|███████ | 1289/1827 [00:16<00:06, 81.53it/s]
1752
  71%|███████ | 1298/1827 [00:16<00:06, 82.69it/s]
1753
  72%|███████▏ | 1307/1827 [00:16<00:06, 82.39it/s]
1754
  72%|███████▏ | 1316/1827 [00:16<00:06, 81.93it/s]
1755
  73%|███████▎ | 1325/1827 [00:16<00:06, 79.75it/s]
1756
  73%|███████▎ | 1334/1827 [00:16<00:06, 80.32it/s]
1757
  74%|███████▎ | 1343/1827 [00:16<00:06, 79.81it/s]
1758
  74%|███████▍ | 1351/1827 [00:16<00:05, 79.79it/s]
1759
  74%|███████▍ | 1359/1827 [00:17<00:05, 79.73it/s]
1760
  75%|███████▍ | 1368/1827 [00:17<00:05, 80.26it/s]
1761
  75%|███████▌ | 1377/1827 [00:17<00:05, 79.57it/s]
1762
  76%|███████▌ | 1386/1827 [00:17<00:05, 80.10it/s]
1763
  76%|███████▋ | 1395/1827 [00:17<00:05, 79.37it/s]
1764
  77%|███████▋ | 1404/1827 [00:17<00:05, 80.47it/s]
1765
  77%|███████▋ | 1413/1827 [00:17<00:05, 80.08it/s]
1766
  78%|███████▊ | 1422/1827 [00:17<00:05, 79.11it/s]
1767
  78%|███████▊ | 1430/1827 [00:17<00:05, 77.31it/s]
1768
  79%|███████▊ | 1438/1827 [00:18<00:05, 75.53it/s]
1769
  79%|███████▉ | 1446/1827 [00:18<00:04, 76.28it/s]
1770
  80%|███████▉ | 1455/1827 [00:18<00:04, 77.69it/s]
1771
  80%|████████ | 1463/1827 [00:18<00:04, 77.56it/s]
1772
  81%|████████ | 1471/1827 [00:18<00:04, 75.50it/s]
1773
  81%|████████ | 1479/1827 [00:18<00:04, 75.70it/s]
1774
  81%|████████▏ | 1487/1827 [00:18<00:04, 76.40it/s]
1775
  82%|████████▏ | 1495/1827 [00:18<00:04, 74.59it/s]
1776
  82%|████████▏ | 1503/1827 [00:18<00:04, 74.46it/s]
1777
  83%|████████▎ | 1511/1827 [00:19<00:04, 76.02it/s]
1778
  83%|████████▎ | 1520/1827 [00:19<00:03, 77.31it/s]
1779
  84%|████████▎ | 1528/1827 [00:19<00:03, 77.21it/s]
1780
  84%|████████▍ | 1536/1827 [00:19<00:03, 77.82it/s]
1781
  85%|████████▍ | 1544/1827 [00:19<00:03, 78.06it/s]
1782
  85%|████████▍ | 1552/1827 [00:19<00:03, 78.36it/s]
1783
  85%|████████▌ | 1560/1827 [00:19<00:03, 78.42it/s]
1784
  86%|████████▌ | 1568/1827 [00:19<00:03, 78.31it/s]
1785
  86%|████████▋ | 1576/1827 [00:19<00:03, 77.83it/s]
1786
  87%|████████▋ | 1584/1827 [00:19<00:03, 78.43it/s]
1787
  87%|████████▋ | 1592/1827 [00:20<00:03, 78.12it/s]
1788
  88%|████████▊ | 1600/1827 [00:20<00:02, 78.44it/s]
1789
  88%|████████▊ | 1609/1827 [00:20<00:02, 79.26it/s]
1790
  89%|████████▊ | 1617/1827 [00:20<00:02, 78.96it/s]
1791
  89%|████████▉ | 1625/1827 [00:20<00:02, 73.35it/s]
1792
  89%|████████▉ | 1633/1827 [00:20<00:02, 74.00it/s]
1793
  90%|████████▉ | 1641/1827 [00:20<00:02, 75.00it/s]
1794
  90%|█████████ | 1650/1827 [00:20<00:02, 76.76it/s]
1795
  91%|█████████ | 1658/1827 [00:20<00:02, 76.99it/s]
1796
  91%|█████████ | 1666/1827 [00:21<00:02, 76.77it/s]
1797
  92%|█████████▏| 1674/1827 [00:21<00:01, 77.34it/s]
1798
  92%|█████████▏| 1683/1827 [00:21<00:01, 78.69it/s]
1799
  93%|█████████▎| 1692/1827 [00:21<00:01, 77.53it/s]
1800
  93%|█████████▎| 1700/1827 [00:21<00:01, 77.18it/s]
1801
  93%|█████████▎| 1708/1827 [00:21<00:01, 77.66it/s]
1802
  94%|█████████▍| 1717/1827 [00:21<00:01, 78.89it/s]
1803
  94%|█████████▍| 1725/1827 [00:21<00:01, 75.55it/s]
1804
  95%|█████████▍| 1733/1827 [00:21<00:01, 76.47it/s]
1805
  95%|█████████▌| 1741/1827 [00:21<00:01, 77.39it/s]
1806
  96%|█████████▌| 1750/1827 [00:22<00:00, 79.17it/s]
1807
  96%|█████████▌| 1758/1827 [00:22<00:00, 79.36it/s]
1808
  97%|█████████▋| 1767/1827 [00:22<00:00, 80.84it/s]
1809
  97%|█████████▋| 1776/1827 [00:22<00:00, 81.41it/s]
1810
  98%|█████████▊| 1785/1827 [00:22<00:00, 82.37it/s]
1811
  98%|█████████▊| 1794/1827 [00:22<00:00, 79.49it/s]
1812
  99%|█████████▊| 1802/1827 [00:22<00:00, 79.48it/s]
1813
  99%|█████████▉| 1810/1827 [00:22<00:00, 79.52it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1501
  {'eval_loss': 1.6103088855743408, 'eval_precision': 0.09223170184104176, 'eval_recall': 0.9439338235294118, 'eval_f1': 0.16804385175488834, 'eval_accuracy': 0.7862743213368668, 'eval_runtime': 14.5612, 'eval_samples_per_second': 467.681, 'eval_steps_per_second': 58.512, 'epoch': 10.0}
1502
  {'train_runtime': 1542.5562, 'train_samples_per_second': 224.329, 'train_steps_per_second': 3.507, 'train_loss': 0.0812657987344287, 'epoch': 10.0}
1503
 
1504
+ ***** train metrics *****
1505
+ epoch = 10.0
1506
+ total_flos = 15996936GF
1507
+ train_loss = 0.0813
1508
+ train_runtime = 0:25:42.55
1509
+ train_samples = 34604
1510
+ train_samples_per_second = 224.329
1511
+ train_steps_per_second = 3.507
1512
+ 09/06/2024 00:35:09 - INFO - __main__ - *** Evaluate ***
1513
+ [INFO|trainer.py:811] 2024-09-06 00:35:09,352 >> The following columns in the evaluation set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
1514
+ [INFO|trainer.py:3819] 2024-09-06 00:35:09,354 >>
1515
+ ***** Running Evaluation *****
1516
+ [INFO|trainer.py:3821] 2024-09-06 00:35:09,354 >> Num examples = 6810
1517
+ [INFO|trainer.py:3824] 2024-09-06 00:35:09,354 >> Batch size = 8
1518
+
1519
  0%| | 0/852 [00:00<?, ?it/s]
1520
  1%| | 10/852 [00:00<00:09, 89.32it/s]
1521
  2%|▏ | 19/852 [00:00<00:10, 77.68it/s]
1522
  3%|▎ | 27/852 [00:00<00:10, 77.19it/s]
1523
  4%|▍ | 35/852 [00:00<00:10, 77.86it/s]
1524
  5%|▌ | 44/852 [00:00<00:10, 79.22it/s]
1525
  6%|▌ | 53/852 [00:00<00:09, 80.49it/s]
1526
  7%|▋ | 62/852 [00:00<00:09, 81.06it/s]
1527
  8%|▊ | 71/852 [00:00<00:09, 78.26it/s]
1528
  9%|▉ | 80/852 [00:01<00:09, 78.24it/s]
1529
  10%|█ | 89/852 [00:01<00:09, 78.87it/s]
1530
  11%|█▏ | 97/852 [00:01<00:09, 78.68it/s]
1531
  12%|█▏ | 106/852 [00:01<00:09, 79.83it/s]
1532
  13%|█▎ | 114/852 [00:01<00:09, 79.66it/s]
1533
  14%|█▍ | 123/852 [00:01<00:09, 80.84it/s]
1534
  15%|█▌ | 132/852 [00:01<00:09, 76.65it/s]
1535
  16%|█▋ | 140/852 [00:01<00:09, 76.74it/s]
1536
  17%|█▋ | 148/852 [00:01<00:09, 76.37it/s]
1537
  18%|█▊ | 156/852 [00:01<00:09, 77.14it/s]
1538
  19%|█▉ | 164/852 [00:02<00:08, 77.82it/s]
1539
  20%|██ | 172/852 [00:02<00:08, 77.95it/s]
1540
  21%|██ | 180/852 [00:02<00:08, 76.88it/s]
1541
  22%|██▏ | 188/852 [00:02<00:08, 77.69it/s]
1542
  23%|██▎ | 196/852 [00:02<00:08, 77.62it/s]
1543
  24%|██▍ | 205/852 [00:02<00:08, 78.72it/s]
1544
  25%|██▌ | 213/852 [00:02<00:08, 77.59it/s]
1545
  26%|██▌ | 221/852 [00:02<00:08, 76.68it/s]
1546
  27%|██▋ | 230/852 [00:02<00:07, 77.89it/s]
1547
  28%|██▊ | 238/852 [00:03<00:07, 77.24it/s]
1548
  29%|██▉ | 246/852 [00:03<00:07, 75.97it/s]
1549
  30%|██▉ | 255/852 [00:03<00:07, 78.31it/s]
1550
  31%|███ | 264/852 [00:03<00:07, 79.83it/s]
1551
  32%|███▏ | 272/852 [00:03<00:07, 79.08it/s]
1552
  33%|███▎ | 281/852 [00:03<00:07, 80.99it/s]
1553
  34%|███▍ | 290/852 [00:03<00:07, 79.72it/s]
1554
  35%|███▍ | 298/852 [00:03<00:06, 79.60it/s]
1555
  36%|███▌ | 307/852 [00:03<00:06, 80.29it/s]
1556
  37%|███▋ | 316/852 [00:04<00:06, 78.10it/s]
1557
  38%|███▊ | 324/852 [00:04<00:06, 78.24it/s]
1558
  39%|███▉ | 332/852 [00:04<00:06, 77.89it/s]
1559
  40%|████ | 341/852 [00:04<00:06, 79.08it/s]
1560
  41%|████ | 350/852 [00:04<00:06, 79.99it/s]
1561
  42%|████▏ | 359/852 [00:04<00:06, 78.18it/s]
1562
  43%|████▎ | 368/852 [00:04<00:06, 79.04it/s]
1563
  44%|████▍ | 377/852 [00:04<00:05, 79.49it/s]
1564
  45%|████▌ | 385/852 [00:04<00:05, 78.76it/s]
1565
  46%|████▌ | 394/852 [00:05<00:05, 79.43it/s]
1566
  47%|████▋ | 402/852 [00:05<00:05, 79.23it/s]
1567
  48%|████▊ | 410/852 [00:05<00:05, 77.00it/s]
1568
  49%|████▉ | 418/852 [00:05<00:05, 77.80it/s]
1569
  50%|█████ | 426/852 [00:05<00:05, 76.10it/s]
1570
  51%|█████ | 435/852 [00:05<00:05, 77.97it/s]
1571
  52%|█████▏ | 444/852 [00:05<00:05, 79.13it/s]
1572
  53%|█████▎ | 453/852 [00:05<00:04, 79.97it/s]
1573
  54%|█████▍ | 461/852 [00:05<00:05, 77.94it/s]
1574
  55%|█████▌ | 469/852 [00:05<00:04, 77.33it/s]
1575
  56%|█████▌ | 477/852 [00:06<00:05, 74.29it/s]
1576
  57%|█████▋ | 485/852 [00:06<00:04, 74.32it/s]
1577
  58%|█████▊ | 494/852 [00:06<00:04, 76.20it/s]
1578
  59%|█████▉ | 503/852 [00:06<00:04, 77.78it/s]
1579
  60%|█████▉ | 511/852 [00:06<00:04, 77.92it/s]
1580
  61%|██████ | 520/852 [00:06<00:04, 79.03it/s]
1581
  62%|██████▏ | 528/852 [00:06<00:04, 77.15it/s]
1582
  63%|██████▎ | 537/852 [00:06<00:03, 79.37it/s]
1583
  64%|██████▍ | 546/852 [00:06<00:03, 80.04it/s]
1584
  65%|██████▌ | 555/852 [00:07<00:03, 77.62it/s]
1585
  66%|██████▌ | 564/852 [00:07<00:03, 78.59it/s]
1586
  67%|██████▋ | 572/852 [00:07<00:03, 78.53it/s]
1587
  68%|██████▊ | 580/852 [00:07<00:03, 78.15it/s]
1588
  69%|██████▉ | 588/852 [00:07<00:03, 77.41it/s]
1589
  70%|███████ | 597/852 [00:07<00:03, 78.12it/s]
1590
  71%|███████ | 605/852 [00:07<00:03, 73.52it/s]
1591
  72%|███████▏ | 613/852 [00:07<00:03, 74.71it/s]
1592
  73%|███████▎ | 621/852 [00:07<00:03, 75.59it/s]
1593
  74%|███████▍ | 629/852 [00:08<00:02, 74.68it/s]
1594
  75%|███████▍ | 638/852 [00:08<00:02, 76.62it/s]
1595
  76%|███████▌ | 646/852 [00:08<00:02, 74.33it/s]
1596
  77%|███████▋ | 655/852 [00:08<00:02, 77.01it/s]
1597
  78%|███████▊ | 663/852 [00:08<00:02, 77.50it/s]
1598
  79%|███████▉ | 671/852 [00:08<00:02, 77.95it/s]
1599
  80%|███████▉ | 680/852 [00:08<00:02, 78.57it/s]
1600
  81%|████████ | 689/852 [00:08<00:02, 80.07it/s]
1601
  82%|████████▏ | 698/852 [00:08<00:01, 80.51it/s]
1602
  83%|████████▎ | 707/852 [00:09<00:01, 81.55it/s]
1603
  84%|████████▍ | 716/852 [00:09<00:01, 81.02it/s]
1604
  85%|████████▌ | 725/852 [00:09<00:01, 80.67it/s]
1605
  86%|████████▌ | 734/852 [00:09<00:01, 81.53it/s]
1606
  87%|████████▋ | 743/852 [00:09<00:01, 81.13it/s]
1607
  88%|████████▊ | 752/852 [00:09<00:01, 80.94it/s]
1608
  89%|████████▉ | 761/852 [00:09<00:01, 82.18it/s]
1609
  90%|█████████ | 770/852 [00:09<00:01, 80.71it/s]
1610
  91%|█████████▏| 779/852 [00:09<00:00, 80.08it/s]
1611
  92%|█████████▏| 788/852 [00:10<00:00, 79.00it/s]
1612
  93%|█████████▎| 796/852 [00:10<00:00, 79.25it/s]
1613
  94%|█████████▍| 805/852 [00:10<00:00, 79.61it/s]
1614
  95%|█████████▌| 813/852 [00:10<00:00, 77.98it/s]
1615
  96%|█████████▋| 822/852 [00:10<00:00, 79.28it/s]
1616
  98%|█████████▊| 831/852 [00:10<00:00, 80.44it/s]
1617
  99%|█████████▊| 840/852 [00:10<00:00, 79.45it/s]
1618
+ _warn_prf(average, modifier, msg_start, len(result))
1619
+
1620
+ ***** eval metrics *****
1621
+ epoch = 10.0
1622
+ eval_accuracy = 0.789
1623
+ eval_f1 = 0.1711
1624
+ eval_loss = 1.1806
1625
+ eval_precision = 0.094
1626
+ eval_recall = 0.954
1627
+ eval_runtime = 0:00:14.51
1628
+ eval_samples = 6810
1629
+ eval_samples_per_second = 469.318
1630
+ eval_steps_per_second = 58.716
1631
+ 09/06/2024 00:35:23 - INFO - __main__ - *** Predict ***
1632
+ [INFO|trainer.py:811] 2024-09-06 00:35:23,872 >> The following columns in the test set don't have a corresponding argument in `RobertaForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `RobertaForTokenClassification.forward`, you can safely ignore this message.
1633
+ [INFO|trainer.py:3819] 2024-09-06 00:35:23,875 >>
1634
+ ***** Running Prediction *****
1635
+ [INFO|trainer.py:3821] 2024-09-06 00:35:23,875 >> Num examples = 14614
1636
+ [INFO|trainer.py:3824] 2024-09-06 00:35:23,875 >> Batch size = 8
1637
+
1638
  0%| | 0/1827 [00:00<?, ?it/s]
1639
  1%| | 10/1827 [00:00<00:21, 86.39it/s]
1640
  1%| | 19/1827 [00:00<00:23, 76.76it/s]
1641
  1%|▏ | 27/1827 [00:00<00:23, 77.35it/s]
1642
  2%|▏ | 35/1827 [00:00<00:23, 76.72it/s]
1643
  2%|▏ | 44/1827 [00:00<00:22, 78.12it/s]
1644
  3%|▎ | 52/1827 [00:00<00:22, 77.86it/s]
1645
  3%|▎ | 60/1827 [00:00<00:23, 75.65it/s]
1646
  4%|▍ | 69/1827 [00:00<00:22, 77.33it/s]
1647
  4%|▍ | 78/1827 [00:00<00:22, 79.22it/s]
1648
  5%|▍ | 86/1827 [00:01<00:22, 77.72it/s]
1649
  5%|▌ | 95/1827 [00:01<00:21, 78.74it/s]
1650
  6%|▌ | 104/1827 [00:01<00:21, 80.10it/s]
1651
  6%|▌ | 113/1827 [00:01<00:21, 80.17it/s]
1652
  7%|▋ | 122/1827 [00:01<00:21, 78.09it/s]
1653
  7%|▋ | 130/1827 [00:01<00:21, 77.56it/s]
1654
  8%|▊ | 139/1827 [00:01<00:21, 79.53it/s]
1655
  8%|▊ | 148/1827 [00:01<00:20, 80.02it/s]
1656
  9%|▊ | 157/1827 [00:02<00:21, 77.61it/s]
1657
  9%|▉ | 166/1827 [00:02<00:21, 78.42it/s]
1658
  10%|▉ | 174/1827 [00:02<00:21, 78.59it/s]
1659
  10%|█ | 183/1827 [00:02<00:20, 80.08it/s]
1660
  11%|█ | 192/1827 [00:02<00:20, 80.24it/s]
1661
  11%|█ | 201/1827 [00:02<00:20, 78.80it/s]
1662
  11%|█▏ | 210/1827 [00:02<00:20, 79.79it/s]
1663
  12%|█▏ | 218/1827 [00:02<00:20, 79.07it/s]
1664
  12%|█▏ | 227/1827 [00:02<00:19, 80.02it/s]
1665
  13%|█▎ | 236/1827 [00:03<00:20, 77.94it/s]
1666
  13%|█▎ | 245/1827 [00:03<00:19, 79.46it/s]
1667
  14%|█▍ | 253/1827 [00:03<00:19, 79.43it/s]
1668
  14%|█▍ | 261/1827 [00:03<00:19, 79.16it/s]
1669
  15%|█▍ | 270/1827 [00:03<00:19, 80.39it/s]
1670
  15%|█▌ | 279/1827 [00:03<00:18, 81.75it/s]
1671
  16%|█▌ | 288/1827 [00:03<00:18, 81.38it/s]
1672
  16%|█▋ | 297/1827 [00:03<00:18, 82.03it/s]
1673
  17%|█▋ | 306/1827 [00:03<00:18, 80.70it/s]
1674
  17%|█▋ | 315/1827 [00:03<00:18, 81.67it/s]
1675
  18%|█▊ | 324/1827 [00:04<00:18, 81.89it/s]
1676
  18%|█▊ | 333/1827 [00:04<00:18, 81.13it/s]
1677
  19%|█▊ | 342/1827 [00:04<00:18, 82.33it/s]
1678
  19%|█▉ | 351/1827 [00:04<00:18, 77.88it/s]
1679
  20%|█▉ | 360/1827 [00:04<00:18, 79.12it/s]
1680
  20%|██ | 369/1827 [00:04<00:18, 80.42it/s]
1681
  21%|██ | 378/1827 [00:04<00:17, 81.01it/s]
1682
  21%|██ | 387/1827 [00:04<00:17, 80.82it/s]
1683
  22%|██▏ | 396/1827 [00:04<00:17, 80.20it/s]
1684
  22%|██▏ | 405/1827 [00:05<00:17, 81.70it/s]
1685
  23%|██▎ | 414/1827 [00:05<00:17, 79.66it/s]
1686
  23%|██▎ | 423/1827 [00:05<00:17, 81.14it/s]
1687
  24%|██▎ | 432/1827 [00:05<00:17, 79.99it/s]
1688
  24%|██▍ | 441/1827 [00:05<00:17, 79.76it/s]
1689
  25%|██▍ | 449/1827 [00:05<00:17, 79.62it/s]
1690
  25%|██▌ | 458/1827 [00:05<00:17, 80.43it/s]
1691
  26%|██▌ | 467/1827 [00:05<00:16, 81.29it/s]
1692
  26%|██▌ | 476/1827 [00:05<00:17, 78.86it/s]
1693
  26%|██▋ | 484/1827 [00:06<00:17, 78.63it/s]
1694
  27%|██▋ | 492/1827 [00:06<00:17, 77.21it/s]
1695
  27%|██▋ | 500/1827 [00:06<00:17, 77.67it/s]
1696
  28%|██▊ | 508/1827 [00:06<00:16, 77.96it/s]
1697
  28%|██▊ | 516/1827 [00:06<00:16, 78.33it/s]
1698
  29%|██▊ | 525/1827 [00:06<00:16, 79.91it/s]
1699
  29%|██▉ | 533/1827 [00:06<00:16, 78.68it/s]
1700
  30%|██▉ | 542/1827 [00:06<00:16, 79.19it/s]
1701
  30%|███ | 550/1827 [00:06<00:16, 78.85it/s]
1702
  31%|███ | 558/1827 [00:07<00:16, 78.22it/s]
1703
  31%|███ | 566/1827 [00:07<00:16, 78.72it/s]
1704
  31%|███▏ | 575/1827 [00:07<00:15, 80.21it/s]
1705
  32%|███▏ | 584/1827 [00:07<00:15, 78.95it/s]
1706
  32%|███▏ | 593/1827 [00:07<00:15, 79.34it/s]
1707
  33%|███▎ | 601/1827 [00:07<00:15, 79.41it/s]
1708
  33%|███▎ | 609/1827 [00:07<00:15, 77.56it/s]
1709
  34%|███▍ | 617/1827 [00:07<00:15, 77.74it/s]
1710
  34%|███▍ | 626/1827 [00:07<00:15, 78.70it/s]
1711
  35%|███▍ | 634/1827 [00:07<00:15, 78.98it/s]
1712
  35%|███▌ | 643/1827 [00:08<00:14, 79.92it/s]
1713
  36%|███▌ | 651/1827 [00:08<00:15, 75.14it/s]
1714
  36%|███▌ | 659/1827 [00:08<00:15, 75.62it/s]
1715
  37%|███▋ | 668/1827 [00:08<00:14, 77.65it/s]
1716
  37%|███▋ | 676/1827 [00:08<00:14, 77.24it/s]
1717
  37%|███▋ | 684/1827 [00:08<00:14, 77.46it/s]
1718
  38%|███▊ | 693/1827 [00:08<00:14, 79.15it/s]
1719
  38%|███▊ | 701/1827 [00:08<00:14, 78.98it/s]
1720
  39%|███▉ | 710/1827 [00:08<00:13, 80.68it/s]
1721
  39%|███▉ | 719/1827 [00:09<00:13, 82.04it/s]
1722
  40%|███▉ | 728/1827 [00:09<00:13, 82.63it/s]
1723
  40%|████ | 737/1827 [00:09<00:13, 82.07it/s]
1724
  41%|████ | 746/1827 [00:09<00:13, 82.50it/s]
1725
  41%|████▏ | 755/1827 [00:09<00:12, 83.02it/s]
1726
  42%|████▏ | 764/1827 [00:09<00:12, 82.22it/s]
1727
  42%|████▏ | 773/1827 [00:09<00:12, 81.23it/s]
1728
  43%|████▎ | 782/1827 [00:09<00:13, 79.31it/s]
1729
  43%|████▎ | 791/1827 [00:09<00:12, 80.00it/s]
1730
  44%|████▍ | 800/1827 [00:10<00:12, 79.01it/s]
1731
  44%|████▍ | 809/1827 [00:10<00:12, 80.15it/s]
1732
  45%|████▍ | 818/1827 [00:10<00:12, 79.71it/s]
1733
  45%|████▌ | 827/1827 [00:10<00:12, 80.88it/s]
1734
  46%|████▌ | 836/1827 [00:10<00:12, 79.73it/s]
1735
  46%|████▋ | 845/1827 [00:10<00:12, 80.84it/s]
1736
  47%|████▋ | 854/1827 [00:10<00:11, 81.23it/s]
1737
  47%|████▋ | 863/1827 [00:10<00:11, 81.73it/s]
1738
  48%|████▊ | 872/1827 [00:10<00:11, 81.75it/s]
1739
  48%|████▊ | 881/1827 [00:11<00:11, 81.62it/s]
1740
  49%|████▊ | 890/1827 [00:11<00:11, 81.91it/s]
1741
  49%|████▉ | 899/1827 [00:11<00:11, 81.83it/s]
1742
  50%|████▉ | 908/1827 [00:11<00:11, 81.18it/s]
1743
  50%|█████ | 917/1827 [00:11<00:11, 81.62it/s]
1744
  51%|█████ | 926/1827 [00:11<00:11, 80.27it/s]
1745
  51%|█████ | 935/1827 [00:11<00:11, 77.20it/s]
1746
  52%|█████▏ | 943/1827 [00:11<00:11, 77.54it/s]
1747
  52%|█████▏ | 951/1827 [00:11<00:11, 76.33it/s]
1748
  52%|█████▏ | 959/1827 [00:12<00:11, 76.78it/s]
1749
  53%|█████▎ | 967/1827 [00:12<00:11, 77.61it/s]
1750
  53%|█████▎ | 975/1827 [00:12<00:11, 76.48it/s]
1751
  54%|█████▍ | 983/1827 [00:12<00:11, 76.46it/s]
1752
  54%|█████▍ | 991/1827 [00:12<00:10, 76.57it/s]
1753
  55%|█████▍ | 999/1827 [00:12<00:10, 77.28it/s]
1754
  55%|█████▌ | 1007/1827 [00:12<00:10, 76.62it/s]
1755
  56%|█████▌ | 1015/1827 [00:12<00:10, 77.11it/s]
1756
  56%|█████▌ | 1023/1827 [00:12<00:10, 77.82it/s]
1757
  56%|█████▋ | 1032/1827 [00:13<00:10, 78.52it/s]
1758
  57%|█████▋ | 1040/1827 [00:13<00:10, 77.02it/s]
1759
  57%|█████▋ | 1048/1827 [00:13<00:10, 77.36it/s]
1760
  58%|█████▊ | 1056/1827 [00:13<00:09, 77.94it/s]
1761
  58%|█████▊ | 1065/1827 [00:13<00:09, 79.46it/s]
1762
  59%|█████▉ | 1074/1827 [00:13<00:09, 80.78it/s]
1763
  59%|█████▉ | 1083/1827 [00:13<00:09, 81.47it/s]
1764
  60%|█████▉ | 1092/1827 [00:13<00:08, 81.99it/s]
1765
  60%|██████ | 1101/1827 [00:13<00:08, 82.35it/s]
1766
  61%|██████ | 1110/1827 [00:13<00:08, 81.93it/s]
1767
  61%|██████ | 1119/1827 [00:14<00:08, 81.44it/s]
1768
  62%|██████▏ | 1128/1827 [00:14<00:08, 81.89it/s]
1769
  62%|██████▏ | 1137/1827 [00:14<00:08, 82.95it/s]
1770
  63%|██████▎ | 1146/1827 [00:14<00:08, 83.37it/s]
1771
  63%|██████▎ | 1155/1827 [00:14<00:08, 83.36it/s]
1772
  64%|██████▎ | 1164/1827 [00:14<00:08, 80.93it/s]
1773
  64%|██████▍ | 1173/1827 [00:14<00:08, 81.26it/s]
1774
  65%|██████▍ | 1182/1827 [00:14<00:08, 79.25it/s]
1775
  65%|██████▌ | 1191/1827 [00:14<00:07, 79.98it/s]
1776
  66%|██████▌ | 1200/1827 [00:15<00:07, 80.51it/s]
1777
  66%|██████▌ | 1209/1827 [00:15<00:07, 80.69it/s]
1778
  67%|██████▋ | 1218/1827 [00:15<00:07, 79.18it/s]
1779
  67%|██████▋ | 1227/1827 [00:15<00:07, 80.18it/s]
1780
  68%|██████▊ | 1236/1827 [00:15<00:07, 80.99it/s]
1781
  68%|██████▊ | 1245/1827 [00:15<00:07, 81.49it/s]
1782
  69%|██████▊ | 1254/1827 [00:15<00:07, 78.96it/s]
1783
  69%|██████▉ | 1262/1827 [00:15<00:07, 78.04it/s]
1784
  70%|██████▉ | 1271/1827 [00:15<00:06, 79.53it/s]
1785
  70%|███████ | 1280/1827 [00:16<00:06, 80.75it/s]
1786
  71%|███████ | 1289/1827 [00:16<00:06, 81.53it/s]
1787
  71%|███████ | 1298/1827 [00:16<00:06, 82.69it/s]
1788
  72%|███████▏ | 1307/1827 [00:16<00:06, 82.39it/s]
1789
  72%|███████▏ | 1316/1827 [00:16<00:06, 81.93it/s]
1790
  73%|███████▎ | 1325/1827 [00:16<00:06, 79.75it/s]
1791
  73%|███████▎ | 1334/1827 [00:16<00:06, 80.32it/s]
1792
  74%|███████▎ | 1343/1827 [00:16<00:06, 79.81it/s]
1793
  74%|███████▍ | 1351/1827 [00:16<00:05, 79.79it/s]
1794
  74%|███████▍ | 1359/1827 [00:17<00:05, 79.73it/s]
1795
  75%|███████▍ | 1368/1827 [00:17<00:05, 80.26it/s]
1796
  75%|███████▌ | 1377/1827 [00:17<00:05, 79.57it/s]
1797
  76%|███████▌ | 1386/1827 [00:17<00:05, 80.10it/s]
1798
  76%|███████▋ | 1395/1827 [00:17<00:05, 79.37it/s]
1799
  77%|███████▋ | 1404/1827 [00:17<00:05, 80.47it/s]
1800
  77%|███████▋ | 1413/1827 [00:17<00:05, 80.08it/s]
1801
  78%|███████▊ | 1422/1827 [00:17<00:05, 79.11it/s]
1802
  78%|███████▊ | 1430/1827 [00:17<00:05, 77.31it/s]
1803
  79%|███████▊ | 1438/1827 [00:18<00:05, 75.53it/s]
1804
  79%|███████▉ | 1446/1827 [00:18<00:04, 76.28it/s]
1805
  80%|███████▉ | 1455/1827 [00:18<00:04, 77.69it/s]
1806
  80%|████████ | 1463/1827 [00:18<00:04, 77.56it/s]
1807
  81%|████████ | 1471/1827 [00:18<00:04, 75.50it/s]
1808
  81%|████████ | 1479/1827 [00:18<00:04, 75.70it/s]
1809
  81%|████████▏ | 1487/1827 [00:18<00:04, 76.40it/s]
1810
  82%|████████▏ | 1495/1827 [00:18<00:04, 74.59it/s]
1811
  82%|████████▏ | 1503/1827 [00:18<00:04, 74.46it/s]
1812
  83%|████████▎ | 1511/1827 [00:19<00:04, 76.02it/s]
1813
  83%|████████▎ | 1520/1827 [00:19<00:03, 77.31it/s]
1814
  84%|████████▎ | 1528/1827 [00:19<00:03, 77.21it/s]
1815
  84%|████████▍ | 1536/1827 [00:19<00:03, 77.82it/s]
1816
  85%|████████▍ | 1544/1827 [00:19<00:03, 78.06it/s]
1817
  85%|████████▍ | 1552/1827 [00:19<00:03, 78.36it/s]
1818
  85%|████████▌ | 1560/1827 [00:19<00:03, 78.42it/s]
1819
  86%|████████▌ | 1568/1827 [00:19<00:03, 78.31it/s]
1820
  86%|████████▋ | 1576/1827 [00:19<00:03, 77.83it/s]
1821
  87%|████████▋ | 1584/1827 [00:19<00:03, 78.43it/s]
1822
  87%|████████▋ | 1592/1827 [00:20<00:03, 78.12it/s]
1823
  88%|████████▊ | 1600/1827 [00:20<00:02, 78.44it/s]
1824
  88%|████████▊ | 1609/1827 [00:20<00:02, 79.26it/s]
1825
  89%|████████▊ | 1617/1827 [00:20<00:02, 78.96it/s]
1826
  89%|████████▉ | 1625/1827 [00:20<00:02, 73.35it/s]
1827
  89%|████████▉ | 1633/1827 [00:20<00:02, 74.00it/s]
1828
  90%|████████▉ | 1641/1827 [00:20<00:02, 75.00it/s]
1829
  90%|█████████ | 1650/1827 [00:20<00:02, 76.76it/s]
1830
  91%|█████████ | 1658/1827 [00:20<00:02, 76.99it/s]
1831
  91%|█████████ | 1666/1827 [00:21<00:02, 76.77it/s]
1832
  92%|█████████▏| 1674/1827 [00:21<00:01, 77.34it/s]
1833
  92%|█████████▏| 1683/1827 [00:21<00:01, 78.69it/s]
1834
  93%|█████████▎| 1692/1827 [00:21<00:01, 77.53it/s]
1835
  93%|█████████▎| 1700/1827 [00:21<00:01, 77.18it/s]
1836
  93%|█████████▎| 1708/1827 [00:21<00:01, 77.66it/s]
1837
  94%|█████████▍| 1717/1827 [00:21<00:01, 78.89it/s]
1838
  94%|█████████▍| 1725/1827 [00:21<00:01, 75.55it/s]
1839
  95%|█████████▍| 1733/1827 [00:21<00:01, 76.47it/s]
1840
  95%|█████████▌| 1741/1827 [00:21<00:01, 77.39it/s]
1841
  96%|█████████▌| 1750/1827 [00:22<00:00, 79.17it/s]
1842
  96%|█████████▌| 1758/1827 [00:22<00:00, 79.36it/s]
1843
  97%|█████████▋| 1767/1827 [00:22<00:00, 80.84it/s]
1844
  97%|█████████▋| 1776/1827 [00:22<00:00, 81.41it/s]
1845
  98%|█████████▊| 1785/1827 [00:22<00:00, 82.37it/s]
1846
  98%|█████████▊| 1794/1827 [00:22<00:00, 79.49it/s]
1847
  99%|█████████▊| 1802/1827 [00:22<00:00, 79.48it/s]
1848
  99%|█████████▉| 1810/1827 [00:22<00:00, 79.52it/s]
1849
+ [INFO|trainer.py:3503] 2024-09-06 00:35:54,295 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1850
+ [INFO|configuration_utils.py:472] 2024-09-06 00:35:54,297 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1851
+ [INFO|modeling_utils.py:2799] 2024-09-06 00:35:55,671 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1852
+ [INFO|tokenization_utils_base.py:2684] 2024-09-06 00:35:55,672 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1853
+ [INFO|tokenization_utils_base.py:2693] 2024-09-06 00:35:55,672 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1854
+ ***** predict metrics *****
1855
+ predict_accuracy = 0.8712
1856
+ predict_f1 = 0.2297
1857
+ predict_loss = 0.7416
1858
+ predict_precision = 0.1307
1859
+ predict_recall = 0.9487
1860
+ predict_runtime = 0:00:29.78
1861
+ predict_samples_per_second = 490.651
1862
+ predict_steps_per_second = 61.34
1863
+
train_results.json CHANGED
@@ -2,8 +2,8 @@
2
  "epoch": 10.0,
3
  "total_flos": 1.7176580067661056e+16,
4
  "train_loss": 0.0812657987344287,
5
- "train_runtime": 1549.44,
6
  "train_samples": 34604,
7
- "train_samples_per_second": 223.332,
8
- "train_steps_per_second": 3.492
9
  }
 
2
  "epoch": 10.0,
3
  "total_flos": 1.7176580067661056e+16,
4
  "train_loss": 0.0812657987344287,
5
+ "train_runtime": 1542.5562,
6
  "train_samples": 34604,
7
+ "train_samples_per_second": 224.329,
8
+ "train_steps_per_second": 3.507
9
  }
trainer_state.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "best_metric": 0.45455732567249935,
3
  "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2705",
4
  "epoch": 10.0,
5
  "eval_steps": 500,
@@ -17,14 +17,14 @@
17
  },
18
  {
19
  "epoch": 1.0,
20
- "eval_accuracy": 0.8443022505389485,
21
- "eval_f1": 0.407486125870823,
22
- "eval_loss": 0.47723615169525146,
23
- "eval_precision": 0.27250473783954515,
24
- "eval_recall": 0.8074403369209172,
25
- "eval_runtime": 14.3908,
26
- "eval_samples_per_second": 473.218,
27
- "eval_steps_per_second": 59.204,
28
  "step": 541
29
  },
30
  {
@@ -36,14 +36,14 @@
36
  },
37
  {
38
  "epoch": 2.0,
39
- "eval_accuracy": 0.8552871874442172,
40
- "eval_f1": 0.43975123088883133,
41
- "eval_loss": 0.4583655595779419,
42
- "eval_precision": 0.30406737143881024,
43
- "eval_recall": 0.7941038839494619,
44
- "eval_runtime": 14.212,
45
- "eval_samples_per_second": 479.173,
46
- "eval_steps_per_second": 59.949,
47
  "step": 1082
48
  },
49
  {
@@ -55,14 +55,14 @@
55
  },
56
  {
57
  "epoch": 3.0,
58
- "eval_accuracy": 0.8435470361267112,
59
- "eval_f1": 0.4338006724608259,
60
- "eval_loss": 0.6447410583496094,
61
- "eval_precision": 0.29758899817216466,
62
- "eval_recall": 0.7999532054281703,
63
- "eval_runtime": 14.3233,
64
- "eval_samples_per_second": 475.451,
65
- "eval_steps_per_second": 59.484,
66
  "step": 1623
67
  },
68
  {
@@ -74,14 +74,14 @@
74
  },
75
  {
76
  "epoch": 4.0,
77
- "eval_accuracy": 0.8398602166778805,
78
- "eval_f1": 0.42338430558177587,
79
- "eval_loss": 0.7413247227668762,
80
- "eval_precision": 0.2895756219333735,
81
- "eval_recall": 0.7870846981750117,
82
- "eval_runtime": 14.5396,
83
- "eval_samples_per_second": 468.375,
84
- "eval_steps_per_second": 58.598,
85
  "step": 2164
86
  },
87
  {
@@ -93,14 +93,14 @@
93
  },
94
  {
95
  "epoch": 5.0,
96
- "eval_accuracy": 0.8564886649182308,
97
- "eval_f1": 0.45455732567249935,
98
- "eval_loss": 0.7005925178527832,
99
- "eval_precision": 0.3152508603513856,
100
- "eval_recall": 0.8144595226953674,
101
- "eval_runtime": 14.2723,
102
- "eval_samples_per_second": 477.148,
103
- "eval_steps_per_second": 59.696,
104
  "step": 2705
105
  },
106
  {
@@ -112,14 +112,14 @@
112
  },
113
  {
114
  "epoch": 6.0,
115
- "eval_accuracy": 0.8504057561069384,
116
- "eval_f1": 0.44700636942675154,
117
- "eval_loss": 0.8111857175827026,
118
- "eval_precision": 0.30710659898477155,
119
- "eval_recall": 0.8210107627515209,
120
- "eval_runtime": 14.3991,
121
- "eval_samples_per_second": 472.946,
122
- "eval_steps_per_second": 59.17,
123
  "step": 3246
124
  },
125
  {
@@ -131,14 +131,14 @@
131
  },
132
  {
133
  "epoch": 7.0,
134
- "eval_accuracy": 0.8532961676301372,
135
- "eval_f1": 0.4493518337567586,
136
- "eval_loss": 0.904643714427948,
137
- "eval_precision": 0.3113658932924077,
138
- "eval_recall": 0.8069723912026205,
139
- "eval_runtime": 14.3036,
140
- "eval_samples_per_second": 476.105,
141
- "eval_steps_per_second": 59.566,
142
  "step": 3787
143
  },
144
  {
@@ -150,14 +150,14 @@
150
  },
151
  {
152
  "epoch": 8.0,
153
- "eval_accuracy": 0.8481538440413583,
154
- "eval_f1": 0.44435897435897437,
155
- "eval_loss": 0.9722912907600403,
156
- "eval_precision": 0.30602154335158044,
157
- "eval_recall": 0.8109499298081423,
158
- "eval_runtime": 14.4222,
159
- "eval_samples_per_second": 472.19,
160
- "eval_steps_per_second": 59.076,
161
  "step": 4328
162
  },
163
  {
@@ -169,14 +169,14 @@
169
  },
170
  {
171
  "epoch": 9.0,
172
- "eval_accuracy": 0.850186057368833,
173
- "eval_f1": 0.44668737060041414,
174
- "eval_loss": 1.002764105796814,
175
- "eval_precision": 0.30871042747272404,
176
- "eval_recall": 0.8076743097800655,
177
- "eval_runtime": 14.2485,
178
- "eval_samples_per_second": 477.944,
179
- "eval_steps_per_second": 59.796,
180
  "step": 4869
181
  },
182
  {
@@ -188,14 +188,14 @@
188
  },
189
  {
190
  "epoch": 10.0,
191
- "eval_accuracy": 0.8533304955579661,
192
- "eval_f1": 0.45038613797131544,
193
- "eval_loss": 1.0022608041763306,
194
- "eval_precision": 0.31162999550965426,
195
- "eval_recall": 0.8118858212447356,
196
- "eval_runtime": 14.4559,
197
- "eval_samples_per_second": 471.089,
198
- "eval_steps_per_second": 58.938,
199
  "step": 5410
200
  },
201
  {
@@ -203,9 +203,9 @@
203
  "step": 5410,
204
  "total_flos": 1.7176580067661056e+16,
205
  "train_loss": 0.0812657987344287,
206
- "train_runtime": 1549.44,
207
- "train_samples_per_second": 223.332,
208
- "train_steps_per_second": 3.492
209
  }
210
  ],
211
  "logging_steps": 500,
 
1
  {
2
+ "best_metric": 0.17114591920857378,
3
  "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-2705",
4
  "epoch": 10.0,
5
  "eval_steps": 500,
 
17
  },
18
  {
19
  "epoch": 1.0,
20
+ "eval_accuracy": 0.7762986255097697,
21
+ "eval_f1": 0.15197789412449098,
22
+ "eval_loss": 0.815065860748291,
23
+ "eval_precision": 0.08251737207833228,
24
+ "eval_recall": 0.9604779411764706,
25
+ "eval_runtime": 14.2875,
26
+ "eval_samples_per_second": 476.64,
27
+ "eval_steps_per_second": 59.632,
28
  "step": 541
29
  },
30
  {
 
36
  },
37
  {
38
  "epoch": 2.0,
39
+ "eval_accuracy": 0.7900778557403161,
40
+ "eval_f1": 0.168,
41
+ "eval_loss": 0.833220362663269,
42
+ "eval_precision": 0.09218777996774771,
43
+ "eval_recall": 0.9457720588235294,
44
+ "eval_runtime": 14.245,
45
+ "eval_samples_per_second": 478.064,
46
+ "eval_steps_per_second": 59.811,
47
  "step": 1082
48
  },
49
  {
 
55
  },
56
  {
57
  "epoch": 3.0,
58
+ "eval_accuracy": 0.7738201491205184,
59
+ "eval_f1": 0.16426810845193607,
60
+ "eval_loss": 1.1093989610671997,
61
+ "eval_precision": 0.08991208982505004,
62
+ "eval_recall": 0.9494485294117647,
63
+ "eval_runtime": 14.3321,
64
+ "eval_samples_per_second": 475.159,
65
+ "eval_steps_per_second": 59.447,
66
  "step": 1623
67
  },
68
  {
 
74
  },
75
  {
76
  "epoch": 4.0,
77
+ "eval_accuracy": 0.7740055199307949,
78
+ "eval_f1": 0.16182605273514364,
79
+ "eval_loss": 1.1206157207489014,
80
+ "eval_precision": 0.08849100456227942,
81
+ "eval_recall": 0.9448529411764706,
82
+ "eval_runtime": 14.4251,
83
+ "eval_samples_per_second": 472.092,
84
+ "eval_steps_per_second": 59.064,
85
  "step": 2164
86
  },
87
  {
 
93
  },
94
  {
95
  "epoch": 5.0,
96
+ "eval_accuracy": 0.7890274211487498,
97
+ "eval_f1": 0.17114591920857378,
98
+ "eval_loss": 1.1805996894836426,
99
+ "eval_precision": 0.09400470929179497,
100
+ "eval_recall": 0.9540441176470589,
101
+ "eval_runtime": 14.1983,
102
+ "eval_samples_per_second": 479.634,
103
+ "eval_steps_per_second": 60.007,
104
  "step": 2705
105
  },
106
  {
 
112
  },
113
  {
114
  "epoch": 6.0,
115
+ "eval_accuracy": 0.7827454103560493,
116
+ "eval_f1": 0.1644558094933674,
117
+ "eval_loss": 1.31381094455719,
118
+ "eval_precision": 0.09005776299667426,
119
+ "eval_recall": 0.9457720588235294,
120
+ "eval_runtime": 14.1863,
121
+ "eval_samples_per_second": 480.042,
122
+ "eval_steps_per_second": 60.058,
123
  "step": 3246
124
  },
125
  {
 
131
  },
132
  {
133
  "epoch": 7.0,
134
+ "eval_accuracy": 0.7874071429552226,
135
+ "eval_f1": 0.16785861076859843,
136
+ "eval_loss": 1.4008890390396118,
137
+ "eval_precision": 0.09217297102103457,
138
+ "eval_recall": 0.9384191176470589,
139
+ "eval_runtime": 14.2845,
140
+ "eval_samples_per_second": 476.742,
141
+ "eval_steps_per_second": 59.645,
142
  "step": 3787
143
  },
144
  {
 
150
  },
151
  {
152
  "epoch": 8.0,
153
+ "eval_accuracy": 0.7790997844206132,
154
+ "eval_f1": 0.16497502819397453,
155
+ "eval_loss": 1.5610512495040894,
156
+ "eval_precision": 0.0904114426982165,
157
+ "eval_recall": 0.9411764705882353,
158
+ "eval_runtime": 14.5465,
159
+ "eval_samples_per_second": 468.153,
160
+ "eval_steps_per_second": 58.571,
161
  "step": 4328
162
  },
163
  {
 
169
  },
170
  {
171
  "epoch": 9.0,
172
+ "eval_accuracy": 0.7835212215249838,
173
+ "eval_f1": 0.16788916055419725,
174
+ "eval_loss": 1.5933887958526611,
175
+ "eval_precision": 0.09211232337685567,
176
+ "eval_recall": 0.9466911764705882,
177
+ "eval_runtime": 14.1983,
178
+ "eval_samples_per_second": 479.635,
179
+ "eval_steps_per_second": 60.007,
180
  "step": 4869
181
  },
182
  {
 
188
  },
189
  {
190
  "epoch": 10.0,
191
+ "eval_accuracy": 0.7862743213368668,
192
+ "eval_f1": 0.16804385175488834,
193
+ "eval_loss": 1.6103088855743408,
194
+ "eval_precision": 0.09223170184104176,
195
+ "eval_recall": 0.9439338235294118,
196
+ "eval_runtime": 14.5612,
197
+ "eval_samples_per_second": 467.681,
198
+ "eval_steps_per_second": 58.512,
199
  "step": 5410
200
  },
201
  {
 
203
  "step": 5410,
204
  "total_flos": 1.7176580067661056e+16,
205
  "train_loss": 0.0812657987344287,
206
+ "train_runtime": 1542.5562,
207
+ "train_samples_per_second": 224.329,
208
+ "train_steps_per_second": 3.507
209
  }
210
  ],
211
  "logging_steps": 500,