--- library_name: transformers license: apache-2.0 base_model: PlanTL-GOB-ES/bsc-bio-ehr-es tags: - token-classification - generated_from_trainer datasets: - Rodrigo1771/combined-train-drugtemist-dev-85-ner metrics: - precision - recall - f1 - accuracy model-index: - name: output results: - task: name: Token Classification type: token-classification dataset: name: Rodrigo1771/combined-train-drugtemist-dev-85-ner type: Rodrigo1771/combined-train-drugtemist-dev-85-ner config: CombinedTrainDrugTEMISTDevNER split: validation args: CombinedTrainDrugTEMISTDevNER metrics: - name: Precision type: precision value: 0.09400470929179497 - name: Recall type: recall value: 0.9540441176470589 - name: F1 type: f1 value: 0.17114591920857378 - name: Accuracy type: accuracy value: 0.7890274211487498 --- # output This model is a fine-tuned version of [PlanTL-GOB-ES/bsc-bio-ehr-es](https://huggingface.co/PlanTL-GOB-ES/bsc-bio-ehr-es) on the Rodrigo1771/combined-train-drugtemist-dev-85-ner dataset. It achieves the following results on the evaluation set: - Loss: 1.1806 - Precision: 0.0940 - Recall: 0.9540 - F1: 0.1711 - Accuracy: 0.7890 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3191 | 1.0 | 541 | 0.8151 | 0.0825 | 0.9605 | 0.1520 | 0.7763 | | 0.1619 | 2.0 | 1082 | 0.8332 | 0.0922 | 0.9458 | 0.168 | 0.7901 | | 0.11 | 3.0 | 1623 | 1.1094 | 0.0899 | 0.9494 | 0.1643 | 0.7738 | | 0.0764 | 4.0 | 2164 | 1.1206 | 0.0885 | 0.9449 | 0.1618 | 0.7740 | | 0.0567 | 5.0 | 2705 | 1.1806 | 0.0940 | 0.9540 | 0.1711 | 0.7890 | | 0.0428 | 6.0 | 3246 | 1.3138 | 0.0901 | 0.9458 | 0.1645 | 0.7827 | | 0.0332 | 7.0 | 3787 | 1.4009 | 0.0922 | 0.9384 | 0.1679 | 0.7874 | | 0.0257 | 8.0 | 4328 | 1.5611 | 0.0904 | 0.9412 | 0.1650 | 0.7791 | | 0.022 | 9.0 | 4869 | 1.5934 | 0.0921 | 0.9467 | 0.1679 | 0.7835 | | 0.0181 | 10.0 | 5410 | 1.6103 | 0.0922 | 0.9439 | 0.1680 | 0.7863 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1