Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.58 +/- 0.65
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7d330393b315932955bcc5f9f8e6f10c371a798a1a967352c07ef943853b3fc
|
3 |
+
size 108253
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff905e42290>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ff905e3e840>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676904059074580124,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL3JvbG8vLnB5ZW52L3ZlcnNpb25zLzMuMTAuOC9lbnZzL2hmZGVlcHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvcm9sby8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvaGZkZWVwcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsor0PuyfmjqFohY/sor0PuyfmjqFohY/sor0PuyfmjqFohY/sor0PuyfmjqFohY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMuwWvlb+Mr8S4oK/nW9LvoWg7z73LQk/NEEPvzRq3T6FsuQ+vRIovzMUmb+sHW4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACyivQ+7J+aOoWiFj/zSDs7YuSyur6ni7myivQ+7J+aOoWiFj/zSDs7YuSyur6ni7myivQ+7J+aOoWiFj/zSDs7YuSyur6ni7myivQ+7J+aOoWiFj/zSDs7YuSyur6ni7mUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.47762066 0.00117969 0.58841735]\n [0.47762066 0.00117969 0.58841735]\n [0.47762066 0.00117969 0.58841735]\n [0.47762066 0.00117969 0.58841735]]",
|
60 |
+
"desired_goal": "[[-0.14738539 -0.69919336 -1.0225241 ]\n [-0.19866796 0.46802154 0.5358576 ]\n [-0.5595887 0.4324509 0.4466745 ]\n [-0.6565359 -1.1959289 0.93014026]]",
|
61 |
+
"observation": "[[ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]\n [ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]\n [ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]\n [ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhOkTPLvcprpHkn4+uWPpPXFFaT0O4Wo+A1nyu9b+ED4EjYQ+vUflPDygur1BH4o+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.00902784 -0.00127306 0.24860488]\n [ 0.11395974 0.05695099 0.22937414]\n [-0.00739586 0.14159712 0.25888836]\n [ 0.02798831 -0.09112594 0.2697697 ]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXpz4akdxB8CUhpRSlIwBbJRLMowBdJRHQJeN9JQLux91fZQoaAZoCWgPQwi1/SsrTcoMwJSGlFKUaBVLMmgWR0CXjblHBk7PdX2UKGgGaAloD0MINZiG4SMCDcCUhpRSlGgVSzJoFkdAl418k+otMHV9lChoBmgJaA9DCEEtBg/TXgnAlIaUUpRoFUsyaBZHQJeNQbvPTod1fZQoaAZoCWgPQwisb2ByowgMwJSGlFKUaBVLMmgWR0CXjw79AHE/dX2UKGgGaAloD0MIDr3Fw3uuCcCUhpRSlGgVSzJoFkdAl47TwUg0THV9lChoBmgJaA9DCC8VG/M6wgbAlIaUUpRoFUsyaBZHQJeOlyU9pyp1fZQoaAZoCWgPQwgZ6NoX0KsJwJSGlFKUaBVLMmgWR0CXjlws5GSZdX2UKGgGaAloD0MIlltaDYlbAMCUhpRSlGgVSzJoFkdAl5As2BJ7LXV9lChoBmgJaA9DCA1slWBx+P6/lIaUUpRoFUsyaBZHQJeP8X40uUV1fZQoaAZoCWgPQwj1TC8xlgkKwJSGlFKUaBVLMmgWR0CXj7UbT+efdX2UKGgGaAloD0MISrTk8bRcCsCUhpRSlGgVSzJoFkdAl496PXCj13V9lChoBmgJaA9DCE9AE2HDE/6/lIaUUpRoFUsyaBZHQJeRSEBbOeJ1fZQoaAZoCWgPQwhAaahRSJIBwJSGlFKUaBVLMmgWR0CXkQzWwu/UdX2UKGgGaAloD0MIOZuOAG42C8CUhpRSlGgVSzJoFkdAl5DQLy+YdHV9lChoBmgJaA9DCNPbn4uGzAXAlIaUUpRoFUsyaBZHQJeQlUT+NtJ1fZQoaAZoCWgPQwhH41C/C9sAwJSGlFKUaBVLMmgWR0CXkmHGCI1tdX2UKGgGaAloD0MIBTOmYI2zAMCUhpRSlGgVSzJoFkdAl5ImbXpW3nV9lChoBmgJaA9DCP8kPneCXQDAlIaUUpRoFUsyaBZHQJeR6dwvQF91fZQoaAZoCWgPQwh3SZwVUVMGwJSGlFKUaBVLMmgWR0CXka7rLQokdX2UKGgGaAloD0MIHZQw0/bPB8CUhpRSlGgVSzJoFkdAl5OBM8HObHV9lChoBmgJaA9DCLw+c9annAbAlIaUUpRoFUsyaBZHQJeTRd2PkrB1fZQoaAZoCWgPQwi2uTE9YakFwJSGlFKUaBVLMmgWR0CXkwlImPYGdX2UKGgGaAloD0MIjpJX5xgwBsCUhpRSlGgVSzJoFkdAl5LOrQw9JXV9lChoBmgJaA9DCD4GK0619gHAlIaUUpRoFUsyaBZHQJeUmy2QXAN1fZQoaAZoCWgPQwgFptO6DSoFwJSGlFKUaBVLMmgWR0CXlF/UvwmWdX2UKGgGaAloD0MIrvIEwk6RB8CUhpRSlGgVSzJoFkdAl5QjI3irDXV9lChoBmgJaA9DCEjBU8iVmgfAlIaUUpRoFUsyaBZHQJeT6C04R291fZQoaAZoCWgPQwj/klSmmAMBwJSGlFKUaBVLMmgWR0CXlbXLeQ+2dX2UKGgGaAloD0MIv/G1Z5bkBMCUhpRSlGgVSzJoFkdAl5V6b4Ju23V9lChoBmgJaA9DCKsEi8OZ3/y/lIaUUpRoFUsyaBZHQJeVPdKujh11fZQoaAZoCWgPQwgmNbQB2MAEwJSGlFKUaBVLMmgWR0CXlQLmZE2HdX2UKGgGaAloD0MITdnpB3WxAcCUhpRSlGgVSzJoFkdAl5bT7Ikqt3V9lChoBmgJaA9DCK+zIf/MIPq/lIaUUpRoFUsyaBZHQJeWmKVII4V1fZQoaAZoCWgPQwjxnC0gtD4GwJSGlFKUaBVLMmgWR0CXllwaisXBdX2UKGgGaAloD0MIkq0upwQE+7+UhpRSlGgVSzJoFkdAl5YhOP/7znV9lChoBmgJaA9DCDQO9buwNQnAlIaUUpRoFUsyaBZHQJeX9GDtgKF1fZQoaAZoCWgPQwgS9u0kIvz8v5SGlFKUaBVLMmgWR0CXl7kSVW0adX2UKGgGaAloD0MIH031ZP4RBsCUhpRSlGgVSzJoFkdAl5d8fJV81HV9lChoBmgJaA9DCHHmV3OAIAXAlIaUUpRoFUsyaBZHQJeXQaZQYUF1fZQoaAZoCWgPQwgjS+ZY3tX/v5SGlFKUaBVLMmgWR0CXmRMQ2/BWdX2UKGgGaAloD0MIUFYMVweA/r+UhpRSlGgVSzJoFkdAl5jXt4RmLHV9lChoBmgJaA9DCN1AgXfy6QDAlIaUUpRoFUsyaBZHQJeYmwr1/Uh1fZQoaAZoCWgPQwhkr3d/vBcIwJSGlFKUaBVLMmgWR0CXmGAkcCHRdX2UKGgGaAloD0MI+Uz2z9PgB8CUhpRSlGgVSzJoFkdAl5ozDGcWkHV9lChoBmgJaA9DCIjZy7bTlve/lIaUUpRoFUsyaBZHQJeZ978ejmF1fZQoaAZoCWgPQwjiBnx+GMECwJSGlFKUaBVLMmgWR0CXmbsSCe3AdX2UKGgGaAloD0MIfXpsy4CzBsCUhpRSlGgVSzJoFkdAl5mAKjSG8HV9lChoBmgJaA9DCKIOK9zyUQPAlIaUUpRoFUsyaBZHQJebU4HX2/V1fZQoaAZoCWgPQwhQHauUnikHwJSGlFKUaBVLMmgWR0CXmxg3cYZVdX2UKGgGaAloD0MIGCe+2lHcBMCUhpRSlGgVSzJoFkdAl5rbhJiAlXV9lChoBmgJaA9DCJxsA3egrgPAlIaUUpRoFUsyaBZHQJeaoJ4SpR51fZQoaAZoCWgPQwjmV3OAYI4EwJSGlFKUaBVLMmgWR0CXnHGTLW7OdX2UKGgGaAloD0MIsmSO5V0VBcCUhpRSlGgVSzJoFkdAl5w2SMcZL3V9lChoBmgJaA9DCPskd9hEpgfAlIaUUpRoFUsyaBZHQJeb+b7TDwZ1fZQoaAZoCWgPQwjrxOV4BUIDwJSGlFKUaBVLMmgWR0CXm77YChexdX2UKGgGaAloD0MIotCy7h8LBsCUhpRSlGgVSzJoFkdAl52P+CK77XV9lChoBmgJaA9DCPlM9s/TQPu/lIaUUpRoFUsyaBZHQJedVKujh1l1fZQoaAZoCWgPQwjCilOthVkHwJSGlFKUaBVLMmgWR0CXnRgTh5xBdX2UKGgGaAloD0MI7e9sj96wA8CUhpRSlGgVSzJoFkdAl5zdHxz7uXV9lChoBmgJaA9DCIlhhzHpzwXAlIaUUpRoFUsyaBZHQJeesnWrfch1fZQoaAZoCWgPQwihhm9h3TgLwJSGlFKUaBVLMmgWR0CXnncv/R3NdX2UKGgGaAloD0MIbLBwkuYvBcCUhpRSlGgVSzJoFkdAl546mKqGUXV9lChoBmgJaA9DCFYt6SgHcwjAlIaUUpRoFUsyaBZHQJed/84xUNt1fZQoaAZoCWgPQwj3zJIANTUEwJSGlFKUaBVLMmgWR0CXn87BwdbQdX2UKGgGaAloD0MIXd+Hg4RIBsCUhpRSlGgVSzJoFkdAl5+Te9Ba93V9lChoBmgJaA9DCFm/mZgupAPAlIaUUpRoFUsyaBZHQJefVuCPIXF1fZQoaAZoCWgPQwgzMzMzM7MFwJSGlFKUaBVLMmgWR0CXnxwzLwF1dX2UKGgGaAloD0MIFxHF5A2wBsCUhpRSlGgVSzJoFkdAl6D1Rk3CK3V9lChoBmgJaA9DCKFns+pzVQXAlIaUUpRoFUsyaBZHQJegue5Fw1l1fZQoaAZoCWgPQwhYIHpSJvUHwJSGlFKUaBVLMmgWR0CXoH1jAi3YdX2UKGgGaAloD0MIv7m/etw3AcCUhpRSlGgVSzJoFkdAl6BCcslLOHV9lChoBmgJaA9DCBe5p6s7lgfAlIaUUpRoFUsyaBZHQJeiEwvg3tN1fZQoaAZoCWgPQwh/FeC7zZv6v5SGlFKUaBVLMmgWR0CXode0Xxe+dX2UKGgGaAloD0MIbw7Xag87CcCUhpRSlGgVSzJoFkdAl6GbNwBHTnV9lChoBmgJaA9DCCHoaFVLmgbAlIaUUpRoFUsyaBZHQJehYFiay8l1fZQoaAZoCWgPQwj7BiY3imwJwJSGlFKUaBVLMmgWR0CXozE8aGYbdX2UKGgGaAloD0MIYD5ZMVxd/7+UhpRSlGgVSzJoFkdAl6L2CEpRXXV9lChoBmgJaA9DCPa3BOCfcgPAlIaUUpRoFUsyaBZHQJeiuYc/+sJ1fZQoaAZoCWgPQwjoTrD/OrcHwJSGlFKUaBVLMmgWR0CXon6Ymb9ZdX2UKGgGaAloD0MI492RsdocBcCUhpRSlGgVSzJoFkdAl6RQSamXPnV9lChoBmgJaA9DCGJqSx3kNQbAlIaUUpRoFUsyaBZHQJekFTBInSh1fZQoaAZoCWgPQwgkSKXY0VgJwJSGlFKUaBVLMmgWR0CXo9iFj/dZdX2UKGgGaAloD0MI42w6AriZ97+UhpRSlGgVSzJoFkdAl6Odjslb/3V9lChoBmgJaA9DCCFWf4RhQADAlIaUUpRoFUsyaBZHQJelbwTdtVJ1fZQoaAZoCWgPQwhqaAOwAZEAwJSGlFKUaBVLMmgWR0CXpTOtnwocdX2UKGgGaAloD0MIT8qkhjZAA8CUhpRSlGgVSzJoFkdAl6T3CoCMgnV9lChoBmgJaA9DCGk3+pgPSAjAlIaUUpRoFUsyaBZHQJekvDP4VRF1fZQoaAZoCWgPQwgXt9EA3oIDwJSGlFKUaBVLMmgWR0CXpot+kP+XdX2UKGgGaAloD0MIYTdsW5RZBMCUhpRSlGgVSzJoFkdAl6ZQOz6acHV9lChoBmgJaA9DCLEzhc5r7AnAlIaUUpRoFUsyaBZHQJemE41gpjN1fZQoaAZoCWgPQwi8k0+PbdkAwJSGlFKUaBVLMmgWR0CXpdiqhlDndX2UKGgGaAloD0MIgsXhzK+mAMCUhpRSlGgVSzJoFkdAl6eqnR9gGHV9lChoBmgJaA9DCBCWsaGb/QLAlIaUUpRoFUsyaBZHQJenb1pTMq11fZQoaAZoCWgPQwgDlfHvM27+v5SGlFKUaBVLMmgWR0CXpzK/EfkndX2UKGgGaAloD0MIwAmFCDgEB8CUhpRSlGgVSzJoFkdAl6b3+dbxE3V9lChoBmgJaA9DCKrukc1VEw/AlIaUUpRoFUsyaBZHQJeoyc6Nly11fZQoaAZoCWgPQwiQFfw2xDgFwJSGlFKUaBVLMmgWR0CXqI6K+BYndX2UKGgGaAloD0MIvceZJmz/AMCUhpRSlGgVSzJoFkdAl6hR2bG3nnV9lChoBmgJaA9DCL0BZr6DvwXAlIaUUpRoFUsyaBZHQJeoFvfj0cx1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8d6a87dc4f26dbceb18c2435d2aae4e627ba6a48843db832c182ef4c389ead50
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8be7ee361e33b11d692dc8dfc8fcca97740dfbe366d3691007917788761f8d64
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.10.8
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7ff905e42290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ff905e3e840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676904059074580124, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVDwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMbi9ob21lL3JvbG8vLnB5ZW52L3ZlcnNpb25zLzMuMTAuOC9lbnZzL2hmZGVlcHJsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxuL2hvbWUvcm9sby8ucHllbnYvdmVyc2lvbnMvMy4xMC44L2VudnMvaGZkZWVwcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAsor0PuyfmjqFohY/sor0PuyfmjqFohY/sor0PuyfmjqFohY/sor0PuyfmjqFohY/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAMuwWvlb+Mr8S4oK/nW9LvoWg7z73LQk/NEEPvzRq3T6FsuQ+vRIovzMUmb+sHW4/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACyivQ+7J+aOoWiFj/zSDs7YuSyur6ni7myivQ+7J+aOoWiFj/zSDs7YuSyur6ni7myivQ+7J+aOoWiFj/zSDs7YuSyur6ni7myivQ+7J+aOoWiFj/zSDs7YuSyur6ni7mUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.47762066 0.00117969 0.58841735]\n [0.47762066 0.00117969 0.58841735]\n [0.47762066 0.00117969 0.58841735]\n [0.47762066 0.00117969 0.58841735]]", "desired_goal": "[[-0.14738539 -0.69919336 -1.0225241 ]\n [-0.19866796 0.46802154 0.5358576 ]\n [-0.5595887 0.4324509 0.4466745 ]\n [-0.6565359 -1.1959289 0.93014026]]", "observation": "[[ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]\n [ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]\n [ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]\n [ 4.7762066e-01 1.1796928e-03 5.8841735e-01 2.8577417e-03\n -1.3648386e-03 -2.6637124e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAhOkTPLvcprpHkn4+uWPpPXFFaT0O4Wo+A1nyu9b+ED4EjYQ+vUflPDygur1BH4o+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00902784 -0.00127306 0.24860488]\n [ 0.11395974 0.05695099 0.22937414]\n [-0.00739586 0.14159712 0.25888836]\n [ 0.02798831 -0.09112594 0.2697697 ]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXpz4akdxB8CUhpRSlIwBbJRLMowBdJRHQJeN9JQLux91fZQoaAZoCWgPQwi1/SsrTcoMwJSGlFKUaBVLMmgWR0CXjblHBk7PdX2UKGgGaAloD0MINZiG4SMCDcCUhpRSlGgVSzJoFkdAl418k+otMHV9lChoBmgJaA9DCEEtBg/TXgnAlIaUUpRoFUsyaBZHQJeNQbvPTod1fZQoaAZoCWgPQwisb2ByowgMwJSGlFKUaBVLMmgWR0CXjw79AHE/dX2UKGgGaAloD0MIDr3Fw3uuCcCUhpRSlGgVSzJoFkdAl47TwUg0THV9lChoBmgJaA9DCC8VG/M6wgbAlIaUUpRoFUsyaBZHQJeOlyU9pyp1fZQoaAZoCWgPQwgZ6NoX0KsJwJSGlFKUaBVLMmgWR0CXjlws5GSZdX2UKGgGaAloD0MIlltaDYlbAMCUhpRSlGgVSzJoFkdAl5As2BJ7LXV9lChoBmgJaA9DCA1slWBx+P6/lIaUUpRoFUsyaBZHQJeP8X40uUV1fZQoaAZoCWgPQwj1TC8xlgkKwJSGlFKUaBVLMmgWR0CXj7UbT+efdX2UKGgGaAloD0MISrTk8bRcCsCUhpRSlGgVSzJoFkdAl496PXCj13V9lChoBmgJaA9DCE9AE2HDE/6/lIaUUpRoFUsyaBZHQJeRSEBbOeJ1fZQoaAZoCWgPQwhAaahRSJIBwJSGlFKUaBVLMmgWR0CXkQzWwu/UdX2UKGgGaAloD0MIOZuOAG42C8CUhpRSlGgVSzJoFkdAl5DQLy+YdHV9lChoBmgJaA9DCNPbn4uGzAXAlIaUUpRoFUsyaBZHQJeQlUT+NtJ1fZQoaAZoCWgPQwhH41C/C9sAwJSGlFKUaBVLMmgWR0CXkmHGCI1tdX2UKGgGaAloD0MIBTOmYI2zAMCUhpRSlGgVSzJoFkdAl5ImbXpW3nV9lChoBmgJaA9DCP8kPneCXQDAlIaUUpRoFUsyaBZHQJeR6dwvQF91fZQoaAZoCWgPQwh3SZwVUVMGwJSGlFKUaBVLMmgWR0CXka7rLQokdX2UKGgGaAloD0MIHZQw0/bPB8CUhpRSlGgVSzJoFkdAl5OBM8HObHV9lChoBmgJaA9DCLw+c9annAbAlIaUUpRoFUsyaBZHQJeTRd2PkrB1fZQoaAZoCWgPQwi2uTE9YakFwJSGlFKUaBVLMmgWR0CXkwlImPYGdX2UKGgGaAloD0MIjpJX5xgwBsCUhpRSlGgVSzJoFkdAl5LOrQw9JXV9lChoBmgJaA9DCD4GK0619gHAlIaUUpRoFUsyaBZHQJeUmy2QXAN1fZQoaAZoCWgPQwgFptO6DSoFwJSGlFKUaBVLMmgWR0CXlF/UvwmWdX2UKGgGaAloD0MIrvIEwk6RB8CUhpRSlGgVSzJoFkdAl5QjI3irDXV9lChoBmgJaA9DCEjBU8iVmgfAlIaUUpRoFUsyaBZHQJeT6C04R291fZQoaAZoCWgPQwj/klSmmAMBwJSGlFKUaBVLMmgWR0CXlbXLeQ+2dX2UKGgGaAloD0MIv/G1Z5bkBMCUhpRSlGgVSzJoFkdAl5V6b4Ju23V9lChoBmgJaA9DCKsEi8OZ3/y/lIaUUpRoFUsyaBZHQJeVPdKujh11fZQoaAZoCWgPQwgmNbQB2MAEwJSGlFKUaBVLMmgWR0CXlQLmZE2HdX2UKGgGaAloD0MITdnpB3WxAcCUhpRSlGgVSzJoFkdAl5bT7Ikqt3V9lChoBmgJaA9DCK+zIf/MIPq/lIaUUpRoFUsyaBZHQJeWmKVII4V1fZQoaAZoCWgPQwjxnC0gtD4GwJSGlFKUaBVLMmgWR0CXllwaisXBdX2UKGgGaAloD0MIkq0upwQE+7+UhpRSlGgVSzJoFkdAl5YhOP/7znV9lChoBmgJaA9DCDQO9buwNQnAlIaUUpRoFUsyaBZHQJeX9GDtgKF1fZQoaAZoCWgPQwgS9u0kIvz8v5SGlFKUaBVLMmgWR0CXl7kSVW0adX2UKGgGaAloD0MIH031ZP4RBsCUhpRSlGgVSzJoFkdAl5d8fJV81HV9lChoBmgJaA9DCHHmV3OAIAXAlIaUUpRoFUsyaBZHQJeXQaZQYUF1fZQoaAZoCWgPQwgjS+ZY3tX/v5SGlFKUaBVLMmgWR0CXmRMQ2/BWdX2UKGgGaAloD0MIUFYMVweA/r+UhpRSlGgVSzJoFkdAl5jXt4RmLHV9lChoBmgJaA9DCN1AgXfy6QDAlIaUUpRoFUsyaBZHQJeYmwr1/Uh1fZQoaAZoCWgPQwhkr3d/vBcIwJSGlFKUaBVLMmgWR0CXmGAkcCHRdX2UKGgGaAloD0MI+Uz2z9PgB8CUhpRSlGgVSzJoFkdAl5ozDGcWkHV9lChoBmgJaA9DCIjZy7bTlve/lIaUUpRoFUsyaBZHQJeZ978ejmF1fZQoaAZoCWgPQwjiBnx+GMECwJSGlFKUaBVLMmgWR0CXmbsSCe3AdX2UKGgGaAloD0MIfXpsy4CzBsCUhpRSlGgVSzJoFkdAl5mAKjSG8HV9lChoBmgJaA9DCKIOK9zyUQPAlIaUUpRoFUsyaBZHQJebU4HX2/V1fZQoaAZoCWgPQwhQHauUnikHwJSGlFKUaBVLMmgWR0CXmxg3cYZVdX2UKGgGaAloD0MIGCe+2lHcBMCUhpRSlGgVSzJoFkdAl5rbhJiAlXV9lChoBmgJaA9DCJxsA3egrgPAlIaUUpRoFUsyaBZHQJeaoJ4SpR51fZQoaAZoCWgPQwjmV3OAYI4EwJSGlFKUaBVLMmgWR0CXnHGTLW7OdX2UKGgGaAloD0MIsmSO5V0VBcCUhpRSlGgVSzJoFkdAl5w2SMcZL3V9lChoBmgJaA9DCPskd9hEpgfAlIaUUpRoFUsyaBZHQJeb+b7TDwZ1fZQoaAZoCWgPQwjrxOV4BUIDwJSGlFKUaBVLMmgWR0CXm77YChexdX2UKGgGaAloD0MIotCy7h8LBsCUhpRSlGgVSzJoFkdAl52P+CK77XV9lChoBmgJaA9DCPlM9s/TQPu/lIaUUpRoFUsyaBZHQJedVKujh1l1fZQoaAZoCWgPQwjCilOthVkHwJSGlFKUaBVLMmgWR0CXnRgTh5xBdX2UKGgGaAloD0MI7e9sj96wA8CUhpRSlGgVSzJoFkdAl5zdHxz7uXV9lChoBmgJaA9DCIlhhzHpzwXAlIaUUpRoFUsyaBZHQJeesnWrfch1fZQoaAZoCWgPQwihhm9h3TgLwJSGlFKUaBVLMmgWR0CXnncv/R3NdX2UKGgGaAloD0MIbLBwkuYvBcCUhpRSlGgVSzJoFkdAl546mKqGUXV9lChoBmgJaA9DCFYt6SgHcwjAlIaUUpRoFUsyaBZHQJed/84xUNt1fZQoaAZoCWgPQwj3zJIANTUEwJSGlFKUaBVLMmgWR0CXn87BwdbQdX2UKGgGaAloD0MIXd+Hg4RIBsCUhpRSlGgVSzJoFkdAl5+Te9Ba93V9lChoBmgJaA9DCFm/mZgupAPAlIaUUpRoFUsyaBZHQJefVuCPIXF1fZQoaAZoCWgPQwgzMzMzM7MFwJSGlFKUaBVLMmgWR0CXnxwzLwF1dX2UKGgGaAloD0MIFxHF5A2wBsCUhpRSlGgVSzJoFkdAl6D1Rk3CK3V9lChoBmgJaA9DCKFns+pzVQXAlIaUUpRoFUsyaBZHQJegue5Fw1l1fZQoaAZoCWgPQwhYIHpSJvUHwJSGlFKUaBVLMmgWR0CXoH1jAi3YdX2UKGgGaAloD0MIv7m/etw3AcCUhpRSlGgVSzJoFkdAl6BCcslLOHV9lChoBmgJaA9DCBe5p6s7lgfAlIaUUpRoFUsyaBZHQJeiEwvg3tN1fZQoaAZoCWgPQwh/FeC7zZv6v5SGlFKUaBVLMmgWR0CXode0Xxe+dX2UKGgGaAloD0MIbw7Xag87CcCUhpRSlGgVSzJoFkdAl6GbNwBHTnV9lChoBmgJaA9DCCHoaFVLmgbAlIaUUpRoFUsyaBZHQJehYFiay8l1fZQoaAZoCWgPQwj7BiY3imwJwJSGlFKUaBVLMmgWR0CXozE8aGYbdX2UKGgGaAloD0MIYD5ZMVxd/7+UhpRSlGgVSzJoFkdAl6L2CEpRXXV9lChoBmgJaA9DCPa3BOCfcgPAlIaUUpRoFUsyaBZHQJeiuYc/+sJ1fZQoaAZoCWgPQwjoTrD/OrcHwJSGlFKUaBVLMmgWR0CXon6Ymb9ZdX2UKGgGaAloD0MI492RsdocBcCUhpRSlGgVSzJoFkdAl6RQSamXPnV9lChoBmgJaA9DCGJqSx3kNQbAlIaUUpRoFUsyaBZHQJekFTBInSh1fZQoaAZoCWgPQwgkSKXY0VgJwJSGlFKUaBVLMmgWR0CXo9iFj/dZdX2UKGgGaAloD0MI42w6AriZ97+UhpRSlGgVSzJoFkdAl6Odjslb/3V9lChoBmgJaA9DCCFWf4RhQADAlIaUUpRoFUsyaBZHQJelbwTdtVJ1fZQoaAZoCWgPQwhqaAOwAZEAwJSGlFKUaBVLMmgWR0CXpTOtnwocdX2UKGgGaAloD0MIT8qkhjZAA8CUhpRSlGgVSzJoFkdAl6T3CoCMgnV9lChoBmgJaA9DCGk3+pgPSAjAlIaUUpRoFUsyaBZHQJekvDP4VRF1fZQoaAZoCWgPQwgXt9EA3oIDwJSGlFKUaBVLMmgWR0CXpot+kP+XdX2UKGgGaAloD0MIYTdsW5RZBMCUhpRSlGgVSzJoFkdAl6ZQOz6acHV9lChoBmgJaA9DCLEzhc5r7AnAlIaUUpRoFUsyaBZHQJemE41gpjN1fZQoaAZoCWgPQwi8k0+PbdkAwJSGlFKUaBVLMmgWR0CXpdiqhlDndX2UKGgGaAloD0MIgsXhzK+mAMCUhpRSlGgVSzJoFkdAl6eqnR9gGHV9lChoBmgJaA9DCBCWsaGb/QLAlIaUUpRoFUsyaBZHQJenb1pTMq11fZQoaAZoCWgPQwgDlfHvM27+v5SGlFKUaBVLMmgWR0CXpzK/EfkndX2UKGgGaAloD0MIwAmFCDgEB8CUhpRSlGgVSzJoFkdAl6b3+dbxE3V9lChoBmgJaA9DCKrukc1VEw/AlIaUUpRoFUsyaBZHQJeoyc6Nly11fZQoaAZoCWgPQwiQFfw2xDgFwJSGlFKUaBVLMmgWR0CXqI6K+BYndX2UKGgGaAloD0MIvceZJmz/AMCUhpRSlGgVSzJoFkdAl6hR2bG3nnV9lChoBmgJaA9DCL0BZr6DvwXAlIaUUpRoFUsyaBZHQJeoFvfj0cx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "True", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (738 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.5848966920748353, "std_reward": 0.6539573545454688, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-20T15:23:24.224919"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2943b52ec5bfe29f135c286734b362ba5e3bf3fe721425f84734213e0ebacfd8
|
3 |
+
size 3273
|