--- library_name: peft license: other base_model: Qwen/Qwen1.5-1.8B tags: - axolotl - generated_from_trainer model-index: - name: b82d5463-6b89-4a7b-bbb2-1c4760d1f05b results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-1.8B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - b9b47b46d5c01cab_train_data.json ds_type: json format: custom path: /workspace/input_data/b9b47b46d5c01cab_train_data.json type: field_input: source field_instruction: title field_output: comment format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: Romain-XV/b82d5463-6b89-4a7b-bbb2-1c4760d1f05b hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: true lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj lr_scheduler: cosine max_steps: 518 micro_batch_size: 4 mlflow_experiment_name: /tmp/b9b47b46d5c01cab_train_data.json model_type: AutoModelForCausalLM optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e3fe0c30-ee99-44d8-983f-a54143508d00 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e3fe0c30-ee99-44d8-983f-a54143508d00 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# b82d5463-6b89-4a7b-bbb2-1c4760d1f05b This model is a fine-tuned version of [Qwen/Qwen1.5-1.8B](https://huggingface.co/Qwen/Qwen1.5-1.8B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 518 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 5.2371 | 0.0017 | 1 | 5.1936 | | 4.3345 | 0.0837 | 50 | 4.2566 | | 4.1078 | 0.1675 | 100 | 4.1231 | | 4.1016 | 0.2512 | 150 | 4.0534 | | 3.8452 | 0.3349 | 200 | 4.0041 | | 3.9826 | 0.4186 | 250 | 3.9643 | | 4.0881 | 0.5024 | 300 | 3.9292 | | 3.6798 | 0.5861 | 350 | 3.9057 | | 3.9747 | 0.6698 | 400 | 3.8880 | | 3.958 | 0.7535 | 450 | 3.8795 | | 3.8107 | 0.8373 | 500 | 3.8768 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1