--- base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: phobert-base-v2-DACN1 results: [] --- # phobert-base-v2-DACN1 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5520 - Accuracy: 0.8784 - F1: 0.8781 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | No log | 0.2782 | 200 | 0.4102 | 0.8061 | 0.8037 | | No log | 0.5563 | 400 | 0.3549 | 0.8456 | 0.8461 | | No log | 0.8345 | 600 | 0.3583 | 0.8466 | 0.8454 | | 0.4175 | 1.1127 | 800 | 0.3401 | 0.8537 | 0.8523 | | 0.4175 | 1.3908 | 1000 | 0.3179 | 0.8639 | 0.8646 | | 0.4175 | 1.6690 | 1200 | 0.3148 | 0.8687 | 0.8691 | | 0.4175 | 1.9471 | 1400 | 0.3240 | 0.8574 | 0.8582 | | 0.3061 | 2.2253 | 1600 | 0.3148 | 0.8734 | 0.8740 | | 0.3061 | 2.5035 | 1800 | 0.3224 | 0.8742 | 0.8743 | | 0.3061 | 2.7816 | 2000 | 0.3288 | 0.8678 | 0.8671 | | 0.2524 | 3.0598 | 2200 | 0.3512 | 0.8767 | 0.8769 | | 0.2524 | 3.3380 | 2400 | 0.3421 | 0.8798 | 0.8796 | | 0.2524 | 3.6161 | 2600 | 0.3089 | 0.8795 | 0.8799 | | 0.2524 | 3.8943 | 2800 | 0.3569 | 0.8718 | 0.8725 | | 0.2123 | 4.1725 | 3000 | 0.3840 | 0.8747 | 0.8744 | | 0.2123 | 4.4506 | 3200 | 0.3681 | 0.8729 | 0.8736 | | 0.2123 | 4.7288 | 3400 | 0.3575 | 0.8725 | 0.8732 | | 0.1771 | 5.0070 | 3600 | 0.3575 | 0.8793 | 0.8794 | | 0.1771 | 5.2851 | 3800 | 0.4285 | 0.8758 | 0.8752 | | 0.1771 | 5.5633 | 4000 | 0.3843 | 0.8778 | 0.8782 | | 0.1771 | 5.8414 | 4200 | 0.3951 | 0.8780 | 0.8779 | | 0.1479 | 6.1196 | 4400 | 0.4364 | 0.8734 | 0.8726 | | 0.1479 | 6.3978 | 4600 | 0.4273 | 0.8753 | 0.8752 | | 0.1479 | 6.6759 | 4800 | 0.4596 | 0.8786 | 0.8783 | | 0.1479 | 6.9541 | 5000 | 0.4498 | 0.8784 | 0.8785 | | 0.1284 | 7.2323 | 5200 | 0.4592 | 0.8793 | 0.8795 | | 0.1284 | 7.5104 | 5400 | 0.4796 | 0.8755 | 0.8747 | | 0.1284 | 7.7886 | 5600 | 0.4830 | 0.8729 | 0.8722 | | 0.1068 | 8.0668 | 5800 | 0.4879 | 0.8789 | 0.8787 | | 0.1068 | 8.3449 | 6000 | 0.5213 | 0.8767 | 0.8761 | | 0.1068 | 8.6231 | 6200 | 0.5114 | 0.8769 | 0.8764 | | 0.1068 | 8.9013 | 6400 | 0.5090 | 0.8778 | 0.8777 | | 0.0946 | 9.1794 | 6600 | 0.5192 | 0.8800 | 0.8800 | | 0.0946 | 9.4576 | 6800 | 0.5517 | 0.8753 | 0.8748 | | 0.0946 | 9.7357 | 7000 | 0.5520 | 0.8784 | 0.8781 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1