File size: 1,670 Bytes
9d9422b
56cb77e
9d9422b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cb77e
9d9422b
56cb77e
 
 
 
 
9d9422b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cb77e
 
 
9d9422b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
base_model: bert-base-chinese
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: berttest2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# berttest2

This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0206
- Precision: 0.9610
- Recall: 0.9653
- F1: 0.9631
- Accuracy: 0.9956

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.028         | 1.0   | 2609 | 0.0225          | 0.9385    | 0.9350 | 0.9368 | 0.9932   |
| 0.011         | 2.0   | 5218 | 0.0182          | 0.9542    | 0.9592 | 0.9567 | 0.9951   |
| 0.0044        | 3.0   | 7827 | 0.0206          | 0.9610    | 0.9653 | 0.9631 | 0.9956   |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1