--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: berttest2 results: [] --- # berttest2 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2938 - Precision: 0.4447 - Recall: 0.3059 - F1: 0.3625 - Accuracy: 0.9212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3339 | 1.0 | 2609 | 0.3198 | 0.4350 | 0.2483 | 0.3161 | 0.9150 | | 0.3034 | 2.0 | 5218 | 0.2974 | 0.4494 | 0.2851 | 0.3489 | 0.9203 | | 0.2879 | 3.0 | 7827 | 0.2938 | 0.4447 | 0.3059 | 0.3625 | 0.9212 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1