--- base_model: bert-base-chinese tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: berttest2 results: [] --- # berttest2 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0206 - Precision: 0.9610 - Recall: 0.9653 - F1: 0.9631 - Accuracy: 0.9956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.028 | 1.0 | 2609 | 0.0225 | 0.9385 | 0.9350 | 0.9368 | 0.9932 | | 0.011 | 2.0 | 5218 | 0.0182 | 0.9542 | 0.9592 | 0.9567 | 0.9951 | | 0.0044 | 3.0 | 7827 | 0.0206 | 0.9610 | 0.9653 | 0.9631 | 0.9956 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1