Rubywong123 commited on
Commit
45c8bdf
1 Parent(s): 76aa690

initialize PPO-based Lunar Lander

Browse files
PPO_lunar_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f582a7dba0d095499ba324fea2465a0c0d2ca90f39a7cf0b0c5bbfb7ab679c3b
3
+ size 147459
PPO_lunar_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
PPO_lunar_lander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45a9ae0b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45a9ae0c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45a9ae0ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45a9ae0d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f45a9ae0dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f45a9ae0e50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f45a9ae0ee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45a9ae0f70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f45a9a63040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45a9a630d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45a9a63160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45a9a631f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f45a9ae11b0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1675934660173326749,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbbQL6B+pK82vKFuvUdv7hK9wI+kDGrOQAAgD8AAIA/8ww2vrY0bLyUeK67j1UJuqE00z12VN46AACAPwAAgD9AXJA99tQHusi09rzasp02Zoitu2YZEbYAAAAAAAAAAIBySL1DuQM/+ma6vQX5xr42izy9sisEPQAAAAAAAAAAWvU/vrv2q7zMMUs7f+HbOU8HGT4lsJy6AACAPwAAgD+zUUO+tAfDvJXh7rs1HYe6kb8tPju1UTsAAIA/AACAP23URr471bO8yoxgOSM44DcZayA+LjqTuAAAgD8AAIA/wNYNPlItzrsNFQI9yU5Uu/YNPb2WijO8AACAPwAAgD8mhHW+3yw4P7M8SL65/Qm/gjZsvjP17T0AAAAAAAAAAM1BxLxSYLy7CGrxORFJ3b0ZevO869+0vgAAgD8AAIA/Jv/GPZIsrjxIgYW+DYksvtPaf70Shqc6AAAAAAAAAACazHC+rOnyPFJFdj6611W+zuoLvVMJKb8AAAAAAACAP/NZPr47SLO8I5UHO7AldzlvOR8+2QQ3ugAAgD8AAIA/81QAPgorVbsVC2w9oAC7u4Pgp7wAoqC8AACAPwAAgD/NsFI89hVfP/UCQL2h6xm/i1IyPIXK9L0AAAAAAAAAAJoe6L0cVFQ9g7FhvbRsVL6inEu9xSrbOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGjOJekH5bECUhpRSlIwBbJRLz4wBdJRHQKKLex9oexR1fZQoaAZoCWgPQwiM22gAr5hwQJSGlFKUaBVL32gWR0Cii6e5Fw1jdX2UKGgGaAloD0MIhhvw+WEbYkCUhpRSlGgVTegDaBZHQKKLrXNC7bt1fZQoaAZoCWgPQwjXTpSExAtxQJSGlFKUaBVL6GgWR0Ciwb9krf+CdX2UKGgGaAloD0MIlUkNbcDfcECUhpRSlGgVS85oFkdAosIU/dIoVnV9lChoBmgJaA9DCChlUkNbKHFAlIaUUpRoFUv7aBZHQKLCUrGR3eN1fZQoaAZoCWgPQwhU/yCS4QRwQJSGlFKUaBVL/GgWR0CiwncKohpydX2UKGgGaAloD0MI8kBkkSZPZUCUhpRSlGgVTegDaBZHQKLDJLf1pTN1fZQoaAZoCWgPQwjAkxYuqzxzQJSGlFKUaBVLzWgWR0CixHUVi4KAdX2UKGgGaAloD0MIkKFjB9UtcECUhpRSlGgVS+toFkdAosSnqxC6YnV9lChoBmgJaA9DCNdMvtlmh3JAlIaUUpRoFUvuaBZHQKLEtylvZRN1fZQoaAZoCWgPQwj2XKYmAVlxQJSGlFKUaBVNEgFoFkdAosTNfXwsoXV9lChoBmgJaA9DCG+9pgdFZ3NAlIaUUpRoFU0aAWgWR0Cixijv/io9dX2UKGgGaAloD0MIl6yKcBNUcECUhpRSlGgVS99oFkdAosZAiHIp6XV9lChoBmgJaA9DCEg17PdEPnBAlIaUUpRoFUvfaBZHQKLGXQKrq+t1fZQoaAZoCWgPQwico46Oq/FwQJSGlFKUaBVLymgWR0CixoZpSJj2dX2UKGgGaAloD0MIDhR4J58ocECUhpRSlGgVS9VoFkdAosaebAk9lnV9lChoBmgJaA9DCDdTIR6JkHFAlIaUUpRoFU0TAWgWR0CixuZ0jkdWdX2UKGgGaAloD0MI6UXtfhWPZUCUhpRSlGgVTegDaBZHQKLHWxUvPC51fZQoaAZoCWgPQwhgsYaL3PZwQJSGlFKUaBVL+WgWR0Cix7apPykLdX2UKGgGaAloD0MIks8rnnqhckCUhpRSlGgVS8ZoFkdAosfdzr/sFHV9lChoBmgJaA9DCGco7ngTo2xAlIaUUpRoFUvRaBZHQKLIFIqbz9V1fZQoaAZoCWgPQwjPgeUIWcVxQJSGlFKUaBVL92gWR0CiyIHndO6/dX2UKGgGaAloD0MIBvcDHpglYUCUhpRSlGgVTegDaBZHQKLIzevZAY51fZQoaAZoCWgPQwh9lXzsrkluQJSGlFKUaBVL42gWR0Ciyas/IKc/dX2UKGgGaAloD0MI6PhocQbLcUCUhpRSlGgVS91oFkdAosmqyWzF/HV9lChoBmgJaA9DCNjV5CkrCWJAlIaUUpRoFU3oA2gWR0CiybRUFSsKdX2UKGgGaAloD0MIVg+Yh0x7cECUhpRSlGgVS9RoFkdAosocnw5NoXV9lChoBmgJaA9DCPNYMzJIUHFAlIaUUpRoFUv1aBZHQKLKPfKISDh1fZQoaAZoCWgPQwiWBKipJUxxQJSGlFKUaBVL/GgWR0CiymjDKoycdX2UKGgGaAloD0MIjGmme51ccUCUhpRSlGgVS9poFkdAosqcpVjqfXV9lChoBmgJaA9DCN481SE3tG9AlIaUUpRoFUvMaBZHQKLK3tygf2d1fZQoaAZoCWgPQwjryJHOwN5yQJSGlFKUaBVL8WgWR0Ciy5o0ygwodX2UKGgGaAloD0MIMuTYeoZRcUCUhpRSlGgVTQABaBZHQKLMSHQhOgx1fZQoaAZoCWgPQwj1vYbgeIBwQJSGlFKUaBVLwWgWR0CizHqREF4cdX2UKGgGaAloD0MIqvBneDM/cUCUhpRSlGgVS+loFkdAos0wMYuTR3V9lChoBmgJaA9DCCVBuAKKAHBAlIaUUpRoFUvNaBZHQKLNX3Zf2K51fZQoaAZoCWgPQwg8SiU8IcJuQJSGlFKUaBVLymgWR0CizYRmbsnidX2UKGgGaAloD0MIy6FFtvOGcUCUhpRSlGgVS+5oFkdAos3GpuMuOHV9lChoBmgJaA9DCKG+ZU7XyXJAlIaUUpRoFU0UAWgWR0Cizd3225QQdX2UKGgGaAloD0MIfbJiuDrqTkCUhpRSlGgVS6toFkdAos5fnwG4Z3V9lChoBmgJaA9DCOyIQzZQMnBAlIaUUpRoFUvjaBZHQKLOdSjxkNF1fZQoaAZoCWgPQwhj78UXLYFyQJSGlFKUaBVNFAFoFkdAos70py6tknV9lChoBmgJaA9DCANC6+ELwHJAlIaUUpRoFUvqaBZHQKLQD2ki2Ul1fZQoaAZoCWgPQwjopWJjXj1vQJSGlFKUaBVLx2gWR0Ci0MGb1AZ9dX2UKGgGaAloD0MIf0sA/qkgcECUhpRSlGgVS8poFkdAotEburp7kXV9lChoBmgJaA9DCD874LpioHFAlIaUUpRoFU0VAmgWR0Ci0S2ilBQfdX2UKGgGaAloD0MI6QyMvCx/cUCUhpRSlGgVS+ZoFkdAotEtUsFt9HV9lChoBmgJaA9DCIkJavgWznFAlIaUUpRoFU0xAWgWR0Ci0Yr+o99udX2UKGgGaAloD0MIdNAlHHr3ckCUhpRSlGgVS/BoFkdAotHbL2YfGXV9lChoBmgJaA9DCFpJK74hKm9AlIaUUpRoFUvcaBZHQKLSLWxQizN1fZQoaAZoCWgPQwi9/E6TmSlhQJSGlFKUaBVN6ANoFkdAotKThtLteHV9lChoBmgJaA9DCKEvvf35QHBAlIaUUpRoFUvmaBZHQKLS4v+OwPl1fZQoaAZoCWgPQwi7mjxlNbdkQJSGlFKUaBVN6ANoFkdAotLsth/iHnV9lChoBmgJaA9DCJaS5SRUjnJAlIaUUpRoFU0bAWgWR0Ci0yTbN8mbdX2UKGgGaAloD0MIeTpXlJKWcECUhpRSlGgVS8xoFkdAotOBRdhRZXV9lChoBmgJaA9DCJEpH4Iqz3BAlIaUUpRoFUu8aBZHQKLT1B5X2dx1fZQoaAZoCWgPQwiz696KxI9uQJSGlFKUaBVLxGgWR0Ci1DZQ53kgdX2UKGgGaAloD0MIlx3iH7bCckCUhpRSlGgVS9JoFkdAotR6Vv/BFnV9lChoBmgJaA9DCMssQrEVPWJAlIaUUpRoFU3oA2gWR0Ci1I8xTKkmdX2UKGgGaAloD0MI2zS214Ieb0CUhpRSlGgVS8toFkdAotSx9y925nV9lChoBmgJaA9DCJbLRud8uW9AlIaUUpRoFUvZaBZHQKLVKMVDa5B1fZQoaAZoCWgPQwggYoOF01pxQJSGlFKUaBVNHAFoFkdAotWN9lVcU3V9lChoBmgJaA9DCEgbR6zFGGRAlIaUUpRoFU3oA2gWR0Ci1fNRFZxJdX2UKGgGaAloD0MIGCKnr+f5bUCUhpRSlGgVS+ZoFkdAotX4XKr7wnV9lChoBmgJaA9DCIMT0a8tgXFAlIaUUpRoFUvYaBZHQKLWBqPfbbl1fZQoaAZoCWgPQwjjpDDvMa5wQJSGlFKUaBVL6GgWR0Ci1kZ/b0vodX2UKGgGaAloD0MIl8gFZ7DlcECUhpRSlGgVS/hoFkdAota6eXiR4nV9lChoBmgJaA9DCDVdT3QddXFAlIaUUpRoFUvpaBZHQKLW69DhLoR1fZQoaAZoCWgPQwhhMlUwKg1gQJSGlFKUaBVN6ANoFkdAotc4xDb8FnV9lChoBmgJaA9DCPjj9ssn9W9AlIaUUpRoFUvAaBZHQKLXgHymQ8x1fZQoaAZoCWgPQwhq+BbWjR1xQJSGlFKUaBVLwWgWR0Ci1/39BKL9dX2UKGgGaAloD0MIAI+oUB1HdECUhpRSlGgVTQUBaBZHQKLYUjpLVWl1fZQoaAZoCWgPQwiwWMNF7jNwQJSGlFKUaBVNHwFoFkdAoth0TewcHXV9lChoBmgJaA9DCIfcDDegvHFAlIaUUpRoFUvFaBZHQKLYfF0gbId1fZQoaAZoCWgPQwgJcHoXbyFwQJSGlFKUaBVLzmgWR0Ci2QxiG34LdX2UKGgGaAloD0MIoP8evPY6cECUhpRSlGgVS+NoFkdAotoIc7yQP3V9lChoBmgJaA9DCBoVONlGnnFAlIaUUpRoFU0MAWgWR0Ci2pnQyAQQdX2UKGgGaAloD0MIdHtJYzQCckCUhpRSlGgVS99oFkdAotuQgxJumHV9lChoBmgJaA9DCFSOyeK+eXJAlIaUUpRoFUv3aBZHQKLboLApKBd1fZQoaAZoCWgPQwhTP28q0oxwQJSGlFKUaBVNAwFoFkdAotuhbjcVQHV9lChoBmgJaA9DCKq53GAo7m9AlIaUUpRoFUvAaBZHQKLcEtDD0lJ1fZQoaAZoCWgPQwh3acNhaVFyQJSGlFKUaBVLzmgWR0Ci3TeF10T2dX2UKGgGaAloD0MIYf4KmSuTcUCUhpRSlGgVS+toFkdAot4Trqt5lnV9lChoBmgJaA9DCKaBH9VwYnBAlIaUUpRoFUvXaBZHQKLeh1J17pp1fZQoaAZoCWgPQwjpDmJnikZwQJSGlFKUaBVNCgFoFkdAot6qJl8PWnV9lChoBmgJaA9DCMrBbAIMt1BAlIaUUpRoFUulaBZHQKLe9rRBu4x1fZQoaAZoCWgPQwhjQswl1RxvQJSGlFKUaBVLx2gWR0Ci3z/r8iwCdX2UKGgGaAloD0MIjln2JDC5Y0CUhpRSlGgVTegDaBZHQKLfP/o7muF1fZQoaAZoCWgPQwhN2ekHNRByQJSGlFKUaBVLyGgWR0Ci4MVqN6w/dX2UKGgGaAloD0MIebEwRA4NckCUhpRSlGgVS/1oFkdAouI1hsqJ/HV9lChoBmgJaA9DCLlVEAPd625AlIaUUpRoFUvDaBZHQKLjGXgtOEd1fZQoaAZoCWgPQwjg88MIYelvQJSGlFKUaBVLzGgWR0Ci46jIikftdX2UKGgGaAloD0MIKXY0DvUbcUCUhpRSlGgVS7loFkdAouO4fuCwr3V9lChoBmgJaA9DCB6NQ/0u5nFAlIaUUpRoFUvNaBZHQKLj4piqhlF1fZQoaAZoCWgPQwid8uhGWI9tQJSGlFKUaBVLx2gWR0Ci4/pQUHpsdX2UKGgGaAloD0MIysABLR39cECUhpRSlGgVTQUBaBZHQKLkm1LJ0XB1fZQoaAZoCWgPQwgTKji8oL9wQJSGlFKUaBVL4WgWR0Ci5aqOktVadX2UKGgGaAloD0MIMe4G0drZZECUhpRSlGgVTegDaBZHQKLl4SVW0Z51fZQoaAZoCWgPQwgicY+ljwdzQJSGlFKUaBVNhAFoFkdAouYpwbVBlnVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 310,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
PPO_lunar_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1e305cde99432ca7f94995df0df8937349f9dd0d93abb8a8b7547a8c1ba06a6
3
+ size 88057
PPO_lunar_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d25735523299bcc24afc9a362b3c96fc05e332c479340aa8342b43087f6ea0a6
3
+ size 43393
PPO_lunar_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
PPO_lunar_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 276.28 +/- 16.52
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f45a9ae0b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f45a9ae0c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f45a9ae0ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f45a9ae0d30>", "_build": "<function ActorCriticPolicy._build at 0x7f45a9ae0dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f45a9ae0e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f45a9ae0ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f45a9ae0f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f45a9a63040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f45a9a630d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f45a9a63160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f45a9a631f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f45a9ae11b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675934660173326749, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbbQL6B+pK82vKFuvUdv7hK9wI+kDGrOQAAgD8AAIA/8ww2vrY0bLyUeK67j1UJuqE00z12VN46AACAPwAAgD9AXJA99tQHusi09rzasp02Zoitu2YZEbYAAAAAAAAAAIBySL1DuQM/+ma6vQX5xr42izy9sisEPQAAAAAAAAAAWvU/vrv2q7zMMUs7f+HbOU8HGT4lsJy6AACAPwAAgD+zUUO+tAfDvJXh7rs1HYe6kb8tPju1UTsAAIA/AACAP23URr471bO8yoxgOSM44DcZayA+LjqTuAAAgD8AAIA/wNYNPlItzrsNFQI9yU5Uu/YNPb2WijO8AACAPwAAgD8mhHW+3yw4P7M8SL65/Qm/gjZsvjP17T0AAAAAAAAAAM1BxLxSYLy7CGrxORFJ3b0ZevO869+0vgAAgD8AAIA/Jv/GPZIsrjxIgYW+DYksvtPaf70Shqc6AAAAAAAAAACazHC+rOnyPFJFdj6611W+zuoLvVMJKb8AAAAAAACAP/NZPr47SLO8I5UHO7AldzlvOR8+2QQ3ugAAgD8AAIA/81QAPgorVbsVC2w9oAC7u4Pgp7wAoqC8AACAPwAAgD/NsFI89hVfP/UCQL2h6xm/i1IyPIXK9L0AAAAAAAAAAJoe6L0cVFQ9g7FhvbRsVL6inEu9xSrbOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIGjOJekH5bECUhpRSlIwBbJRLz4wBdJRHQKKLex9oexR1fZQoaAZoCWgPQwiM22gAr5hwQJSGlFKUaBVL32gWR0Cii6e5Fw1jdX2UKGgGaAloD0MIhhvw+WEbYkCUhpRSlGgVTegDaBZHQKKLrXNC7bt1fZQoaAZoCWgPQwjXTpSExAtxQJSGlFKUaBVL6GgWR0Ciwb9krf+CdX2UKGgGaAloD0MIlUkNbcDfcECUhpRSlGgVS85oFkdAosIU/dIoVnV9lChoBmgJaA9DCChlUkNbKHFAlIaUUpRoFUv7aBZHQKLCUrGR3eN1fZQoaAZoCWgPQwhU/yCS4QRwQJSGlFKUaBVL/GgWR0CiwncKohpydX2UKGgGaAloD0MI8kBkkSZPZUCUhpRSlGgVTegDaBZHQKLDJLf1pTN1fZQoaAZoCWgPQwjAkxYuqzxzQJSGlFKUaBVLzWgWR0CixHUVi4KAdX2UKGgGaAloD0MIkKFjB9UtcECUhpRSlGgVS+toFkdAosSnqxC6YnV9lChoBmgJaA9DCNdMvtlmh3JAlIaUUpRoFUvuaBZHQKLEtylvZRN1fZQoaAZoCWgPQwj2XKYmAVlxQJSGlFKUaBVNEgFoFkdAosTNfXwsoXV9lChoBmgJaA9DCG+9pgdFZ3NAlIaUUpRoFU0aAWgWR0Cixijv/io9dX2UKGgGaAloD0MIl6yKcBNUcECUhpRSlGgVS99oFkdAosZAiHIp6XV9lChoBmgJaA9DCEg17PdEPnBAlIaUUpRoFUvfaBZHQKLGXQKrq+t1fZQoaAZoCWgPQwico46Oq/FwQJSGlFKUaBVLymgWR0CixoZpSJj2dX2UKGgGaAloD0MIDhR4J58ocECUhpRSlGgVS9VoFkdAosaebAk9lnV9lChoBmgJaA9DCDdTIR6JkHFAlIaUUpRoFU0TAWgWR0CixuZ0jkdWdX2UKGgGaAloD0MI6UXtfhWPZUCUhpRSlGgVTegDaBZHQKLHWxUvPC51fZQoaAZoCWgPQwhgsYaL3PZwQJSGlFKUaBVL+WgWR0Cix7apPykLdX2UKGgGaAloD0MIks8rnnqhckCUhpRSlGgVS8ZoFkdAosfdzr/sFHV9lChoBmgJaA9DCGco7ngTo2xAlIaUUpRoFUvRaBZHQKLIFIqbz9V1fZQoaAZoCWgPQwjPgeUIWcVxQJSGlFKUaBVL92gWR0CiyIHndO6/dX2UKGgGaAloD0MIBvcDHpglYUCUhpRSlGgVTegDaBZHQKLIzevZAY51fZQoaAZoCWgPQwh9lXzsrkluQJSGlFKUaBVL42gWR0Ciyas/IKc/dX2UKGgGaAloD0MI6PhocQbLcUCUhpRSlGgVS91oFkdAosmqyWzF/HV9lChoBmgJaA9DCNjV5CkrCWJAlIaUUpRoFU3oA2gWR0CiybRUFSsKdX2UKGgGaAloD0MIVg+Yh0x7cECUhpRSlGgVS9RoFkdAosocnw5NoXV9lChoBmgJaA9DCPNYMzJIUHFAlIaUUpRoFUv1aBZHQKLKPfKISDh1fZQoaAZoCWgPQwiWBKipJUxxQJSGlFKUaBVL/GgWR0CiymjDKoycdX2UKGgGaAloD0MIjGmme51ccUCUhpRSlGgVS9poFkdAosqcpVjqfXV9lChoBmgJaA9DCN481SE3tG9AlIaUUpRoFUvMaBZHQKLK3tygf2d1fZQoaAZoCWgPQwjryJHOwN5yQJSGlFKUaBVL8WgWR0Ciy5o0ygwodX2UKGgGaAloD0MIMuTYeoZRcUCUhpRSlGgVTQABaBZHQKLMSHQhOgx1fZQoaAZoCWgPQwj1vYbgeIBwQJSGlFKUaBVLwWgWR0CizHqREF4cdX2UKGgGaAloD0MIqvBneDM/cUCUhpRSlGgVS+loFkdAos0wMYuTR3V9lChoBmgJaA9DCCVBuAKKAHBAlIaUUpRoFUvNaBZHQKLNX3Zf2K51fZQoaAZoCWgPQwg8SiU8IcJuQJSGlFKUaBVLymgWR0CizYRmbsnidX2UKGgGaAloD0MIy6FFtvOGcUCUhpRSlGgVS+5oFkdAos3GpuMuOHV9lChoBmgJaA9DCKG+ZU7XyXJAlIaUUpRoFU0UAWgWR0Cizd3225QQdX2UKGgGaAloD0MIfbJiuDrqTkCUhpRSlGgVS6toFkdAos5fnwG4Z3V9lChoBmgJaA9DCOyIQzZQMnBAlIaUUpRoFUvjaBZHQKLOdSjxkNF1fZQoaAZoCWgPQwhj78UXLYFyQJSGlFKUaBVNFAFoFkdAos70py6tknV9lChoBmgJaA9DCANC6+ELwHJAlIaUUpRoFUvqaBZHQKLQD2ki2Ul1fZQoaAZoCWgPQwjopWJjXj1vQJSGlFKUaBVLx2gWR0Ci0MGb1AZ9dX2UKGgGaAloD0MIf0sA/qkgcECUhpRSlGgVS8poFkdAotEburp7kXV9lChoBmgJaA9DCD874LpioHFAlIaUUpRoFU0VAmgWR0Ci0S2ilBQfdX2UKGgGaAloD0MI6QyMvCx/cUCUhpRSlGgVS+ZoFkdAotEtUsFt9HV9lChoBmgJaA9DCIkJavgWznFAlIaUUpRoFU0xAWgWR0Ci0Yr+o99udX2UKGgGaAloD0MIdNAlHHr3ckCUhpRSlGgVS/BoFkdAotHbL2YfGXV9lChoBmgJaA9DCFpJK74hKm9AlIaUUpRoFUvcaBZHQKLSLWxQizN1fZQoaAZoCWgPQwi9/E6TmSlhQJSGlFKUaBVN6ANoFkdAotKThtLteHV9lChoBmgJaA9DCKEvvf35QHBAlIaUUpRoFUvmaBZHQKLS4v+OwPl1fZQoaAZoCWgPQwi7mjxlNbdkQJSGlFKUaBVN6ANoFkdAotLsth/iHnV9lChoBmgJaA9DCJaS5SRUjnJAlIaUUpRoFU0bAWgWR0Ci0yTbN8mbdX2UKGgGaAloD0MIeTpXlJKWcECUhpRSlGgVS8xoFkdAotOBRdhRZXV9lChoBmgJaA9DCJEpH4Iqz3BAlIaUUpRoFUu8aBZHQKLT1B5X2dx1fZQoaAZoCWgPQwiz696KxI9uQJSGlFKUaBVLxGgWR0Ci1DZQ53kgdX2UKGgGaAloD0MIlx3iH7bCckCUhpRSlGgVS9JoFkdAotR6Vv/BFnV9lChoBmgJaA9DCMssQrEVPWJAlIaUUpRoFU3oA2gWR0Ci1I8xTKkmdX2UKGgGaAloD0MI2zS214Ieb0CUhpRSlGgVS8toFkdAotSx9y925nV9lChoBmgJaA9DCJbLRud8uW9AlIaUUpRoFUvZaBZHQKLVKMVDa5B1fZQoaAZoCWgPQwggYoOF01pxQJSGlFKUaBVNHAFoFkdAotWN9lVcU3V9lChoBmgJaA9DCEgbR6zFGGRAlIaUUpRoFU3oA2gWR0Ci1fNRFZxJdX2UKGgGaAloD0MIGCKnr+f5bUCUhpRSlGgVS+ZoFkdAotX4XKr7wnV9lChoBmgJaA9DCIMT0a8tgXFAlIaUUpRoFUvYaBZHQKLWBqPfbbl1fZQoaAZoCWgPQwjjpDDvMa5wQJSGlFKUaBVL6GgWR0Ci1kZ/b0vodX2UKGgGaAloD0MIl8gFZ7DlcECUhpRSlGgVS/hoFkdAota6eXiR4nV9lChoBmgJaA9DCDVdT3QddXFAlIaUUpRoFUvpaBZHQKLW69DhLoR1fZQoaAZoCWgPQwhhMlUwKg1gQJSGlFKUaBVN6ANoFkdAotc4xDb8FnV9lChoBmgJaA9DCPjj9ssn9W9AlIaUUpRoFUvAaBZHQKLXgHymQ8x1fZQoaAZoCWgPQwhq+BbWjR1xQJSGlFKUaBVLwWgWR0Ci1/39BKL9dX2UKGgGaAloD0MIAI+oUB1HdECUhpRSlGgVTQUBaBZHQKLYUjpLVWl1fZQoaAZoCWgPQwiwWMNF7jNwQJSGlFKUaBVNHwFoFkdAoth0TewcHXV9lChoBmgJaA9DCIfcDDegvHFAlIaUUpRoFUvFaBZHQKLYfF0gbId1fZQoaAZoCWgPQwgJcHoXbyFwQJSGlFKUaBVLzmgWR0Ci2QxiG34LdX2UKGgGaAloD0MIoP8evPY6cECUhpRSlGgVS+NoFkdAotoIc7yQP3V9lChoBmgJaA9DCBoVONlGnnFAlIaUUpRoFU0MAWgWR0Ci2pnQyAQQdX2UKGgGaAloD0MIdHtJYzQCckCUhpRSlGgVS99oFkdAotuQgxJumHV9lChoBmgJaA9DCFSOyeK+eXJAlIaUUpRoFUv3aBZHQKLboLApKBd1fZQoaAZoCWgPQwhTP28q0oxwQJSGlFKUaBVNAwFoFkdAotuhbjcVQHV9lChoBmgJaA9DCKq53GAo7m9AlIaUUpRoFUvAaBZHQKLcEtDD0lJ1fZQoaAZoCWgPQwh3acNhaVFyQJSGlFKUaBVLzmgWR0Ci3TeF10T2dX2UKGgGaAloD0MIYf4KmSuTcUCUhpRSlGgVS+toFkdAot4Trqt5lnV9lChoBmgJaA9DCKaBH9VwYnBAlIaUUpRoFUvXaBZHQKLeh1J17pp1fZQoaAZoCWgPQwjpDmJnikZwQJSGlFKUaBVNCgFoFkdAot6qJl8PWnV9lChoBmgJaA9DCMrBbAIMt1BAlIaUUpRoFUulaBZHQKLe9rRBu4x1fZQoaAZoCWgPQwhjQswl1RxvQJSGlFKUaBVLx2gWR0Ci3z/r8iwCdX2UKGgGaAloD0MIjln2JDC5Y0CUhpRSlGgVTegDaBZHQKLfP/o7muF1fZQoaAZoCWgPQwhN2ekHNRByQJSGlFKUaBVLyGgWR0Ci4MVqN6w/dX2UKGgGaAloD0MIebEwRA4NckCUhpRSlGgVS/1oFkdAouI1hsqJ/HV9lChoBmgJaA9DCLlVEAPd625AlIaUUpRoFUvDaBZHQKLjGXgtOEd1fZQoaAZoCWgPQwjg88MIYelvQJSGlFKUaBVLzGgWR0Ci46jIikftdX2UKGgGaAloD0MIKXY0DvUbcUCUhpRSlGgVS7loFkdAouO4fuCwr3V9lChoBmgJaA9DCB6NQ/0u5nFAlIaUUpRoFUvNaBZHQKLj4piqhlF1fZQoaAZoCWgPQwid8uhGWI9tQJSGlFKUaBVLx2gWR0Ci4/pQUHpsdX2UKGgGaAloD0MIysABLR39cECUhpRSlGgVTQUBaBZHQKLkm1LJ0XB1fZQoaAZoCWgPQwgTKji8oL9wQJSGlFKUaBVL4WgWR0Ci5aqOktVadX2UKGgGaAloD0MIMe4G0drZZECUhpRSlGgVTegDaBZHQKLl4SVW0Z51fZQoaAZoCWgPQwgicY+ljwdzQJSGlFKUaBVNhAFoFkdAouYpwbVBlnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (213 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 276.2837830038635, "std_reward": 16.522779621649644, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T10:22:08.352500"}