Rumi commited on
Commit
db3dc65
1 Parent(s): bb3dd1e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +66 -1
README.md CHANGED
@@ -23,7 +23,72 @@ This llama model was trained 2x faster with [Unsloth](https://github.com/unsloth
23
 
24
  # How to conduct inference
25
 
26
- `import XXXX`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
 
29
 
 
23
 
24
  # How to conduct inference
25
 
26
+ ```
27
+ from unsloth import FastLanguageModel
28
+ from peft import PeftModel
29
+ import torch
30
+ import json
31
+ from tqdm import tqdm
32
+ import re
33
+
34
+ # Base model id and LoRA adapter ID
35
+ base_model_id = "llm-jp/llm-jp-3-13b"
36
+ adapter_id = "Rumi/llm-jp_SFT_rn_2024-12-14_06"
37
+
38
+ # Log in with your Hugging Face token
39
+ HF_TOKEN = "hogehoge"
40
+ from huggingface_hub import login
41
+ login(HF_TOKEN)
42
+
43
+ # Download the original model
44
+ dtype = None
45
+ load_in_4bit = True
46
+
47
+ base_model, tokenizer = FastLanguageModel.from_pretrained(
48
+ model_name=base_model_id,
49
+ dtype=dtype,
50
+ load_in_4bit=load_in_4bit,
51
+ trust_remote_code=True,
52
+ )
53
+
54
+ # Merge adapter to the base model
55
+ model = PeftModel.from_pretrained(base_model, adapter_id, token = HF_TOKEN)
56
+
57
+ # Read evaluation dataset
58
+ datasets = []
59
+ with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
60
+ item = ""
61
+ for line in f:
62
+ line = line.strip()
63
+ item += line
64
+ if item.endswith("}"):
65
+ datasets.append(json.loads(item))
66
+ item = ""
67
+
68
+ # Change the format and conduct the evaluation
69
+ FastLanguageModel.for_inference(model)
70
+
71
+ results = []
72
+ for dt in tqdm(datasets):
73
+ input = dt["input"]
74
+
75
+ prompt = f"""### 指示\n{input}\n### 回答\n"""
76
+
77
+ inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
78
+
79
+ outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2)
80
+ prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
81
+
82
+ results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
83
+
84
+ # Save result in the jsonl format
85
+ json_file_id = re.sub(".*/", "", adapter_id)
86
+ with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f:
87
+ for result in results:
88
+ json.dump(result, f, ensure_ascii=False)
89
+ f.write('\n')
90
+
91
+ ```
92
 
93
 
94