--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en datasets: - kinokokoro/ichikara-instruction-003 --- # Uploaded model - **Developed by:** Rumi - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. # How to conduct inference ``` from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re # Base model id and LoRA adapter ID base_model_id = "llm-jp/llm-jp-3-13b" adapter_id = "Rumi/llm-jp_SFT_rn_2024-12-14_06" # Log in with your Hugging Face token HF_TOKEN = "hogehoge" from huggingface_hub import login login(HF_TOKEN) # Download the original model dtype = None load_in_4bit = True base_model, tokenizer = FastLanguageModel.from_pretrained( model_name=base_model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, ) # Merge adapter to the base model model = PeftModel.from_pretrained(base_model, adapter_id, token = HF_TOKEN) # Read evaluation dataset datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # Change the format and conduct the evaluation FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) # Save result in the jsonl format json_file_id = re.sub(".*/", "", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ``` [](https://github.com/unslothai/unsloth)