File size: 2,875 Bytes
6c698bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter10_sftsd2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter10_sftsd2

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1964
- Num Input Tokens Seen: 4977584

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.2728        | 0.0533 | 5    | 1.2766          | 266944            |
| 1.0944        | 0.1067 | 10   | 1.2041          | 528504            |
| 1.061         | 0.16   | 15   | 1.1908          | 790952            |
| 0.9567        | 0.2133 | 20   | 1.2032          | 1063680           |
| 0.7259        | 0.2667 | 25   | 1.2107          | 1330032           |
| 0.7803        | 0.32   | 30   | 1.2163          | 1602016           |
| 0.7025        | 0.3733 | 35   | 1.2305          | 1868424           |
| 0.7138        | 0.4267 | 40   | 1.2162          | 2141336           |
| 0.6717        | 0.48   | 45   | 1.2232          | 2412000           |
| 0.5593        | 0.5333 | 50   | 1.2079          | 2679920           |
| 0.5536        | 0.5867 | 55   | 1.2070          | 2946904           |
| 0.562         | 0.64   | 60   | 1.2054          | 3215776           |
| 0.4965        | 0.6933 | 65   | 1.2006          | 3479152           |
| 0.5015        | 0.7467 | 70   | 1.2018          | 3746592           |
| 0.4981        | 0.8    | 75   | 1.1892          | 4015920           |
| 0.5343        | 0.8533 | 80   | 1.1997          | 4286352           |
| 0.4309        | 0.9067 | 85   | 1.2070          | 4550912           |
| 0.5186        | 0.96   | 90   | 1.1959          | 4816776           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1