File size: 2,875 Bytes
9ab8717
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter11_sftsd2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter11_sftsd2

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2001
- Num Input Tokens Seen: 5006560

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3681        | 0.0533 | 5    | 1.2755          | 261848            |
| 1.118         | 0.1065 | 10   | 1.2036          | 531488            |
| 1.0328        | 0.1598 | 15   | 1.1938          | 805024            |
| 0.9333        | 0.2130 | 20   | 1.2164          | 1075696           |
| 0.8818        | 0.2663 | 25   | 1.2197          | 1343520           |
| 0.8052        | 0.3196 | 30   | 1.2471          | 1613144           |
| 0.6982        | 0.3728 | 35   | 1.2279          | 1880416           |
| 0.6596        | 0.4261 | 40   | 1.2155          | 2153872           |
| 0.6369        | 0.4794 | 45   | 1.2117          | 2422304           |
| 0.4371        | 0.5326 | 50   | 1.2172          | 2694960           |
| 0.43          | 0.5859 | 55   | 1.2114          | 2956912           |
| 0.5446        | 0.6391 | 60   | 1.2153          | 3230368           |
| 0.5092        | 0.6924 | 65   | 1.2052          | 3504768           |
| 0.4249        | 0.7457 | 70   | 1.2069          | 3771264           |
| 0.4894        | 0.7989 | 75   | 1.2033          | 4044656           |
| 0.6736        | 0.8522 | 80   | 1.2046          | 4314136           |
| 0.5114        | 0.9055 | 85   | 1.1947          | 4586208           |
| 0.3609        | 0.9587 | 90   | 1.2142          | 4850112           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1