File size: 2,875 Bytes
5de6ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter12_sftsd1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter12_sftsd1

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1920
- Num Input Tokens Seen: 5011248

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 1
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3649        | 0.0529 | 5    | 1.2745          | 267096            |
| 1.1224        | 0.1058 | 10   | 1.2058          | 530288            |
| 0.9974        | 0.1587 | 15   | 1.2049          | 800248            |
| 0.8189        | 0.2116 | 20   | 1.2372          | 1058320           |
| 0.7833        | 0.2646 | 25   | 1.2189          | 1325704           |
| 0.6665        | 0.3175 | 30   | 1.2693          | 1584760           |
| 0.5681        | 0.3704 | 35   | 1.2443          | 1856304           |
| 0.5335        | 0.4233 | 40   | 1.2355          | 2125480           |
| 0.5541        | 0.4762 | 45   | 1.2238          | 2393968           |
| 0.4262        | 0.5291 | 50   | 1.2276          | 2656976           |
| 0.4628        | 0.5820 | 55   | 1.2021          | 2920640           |
| 0.3494        | 0.6349 | 60   | 1.2094          | 3190360           |
| 0.4511        | 0.6878 | 65   | 1.1954          | 3457336           |
| 0.3678        | 0.7407 | 70   | 1.1997          | 3727624           |
| 0.4241        | 0.7937 | 75   | 1.1929          | 3995904           |
| 0.3534        | 0.8466 | 80   | 1.1951          | 4259976           |
| 0.3476        | 0.8995 | 85   | 1.1903          | 4524480           |
| 0.4014        | 0.9524 | 90   | 1.1970          | 4798896           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1