--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter12_sftsd1 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter12_sftsd1 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1920 - Num Input Tokens Seen: 5011248 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 1 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.3649 | 0.0529 | 5 | 1.2745 | 267096 | | 1.1224 | 0.1058 | 10 | 1.2058 | 530288 | | 0.9974 | 0.1587 | 15 | 1.2049 | 800248 | | 0.8189 | 0.2116 | 20 | 1.2372 | 1058320 | | 0.7833 | 0.2646 | 25 | 1.2189 | 1325704 | | 0.6665 | 0.3175 | 30 | 1.2693 | 1584760 | | 0.5681 | 0.3704 | 35 | 1.2443 | 1856304 | | 0.5335 | 0.4233 | 40 | 1.2355 | 2125480 | | 0.5541 | 0.4762 | 45 | 1.2238 | 2393968 | | 0.4262 | 0.5291 | 50 | 1.2276 | 2656976 | | 0.4628 | 0.5820 | 55 | 1.2021 | 2920640 | | 0.3494 | 0.6349 | 60 | 1.2094 | 3190360 | | 0.4511 | 0.6878 | 65 | 1.1954 | 3457336 | | 0.3678 | 0.7407 | 70 | 1.1997 | 3727624 | | 0.4241 | 0.7937 | 75 | 1.1929 | 3995904 | | 0.3534 | 0.8466 | 80 | 1.1951 | 4259976 | | 0.3476 | 0.8995 | 85 | 1.1903 | 4524480 | | 0.4014 | 0.9524 | 90 | 1.1970 | 4798896 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1