File size: 2,875 Bytes
5616b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter13_sftsd0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter13_sftsd0

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2032
- Num Input Tokens Seen: 5020446

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.34          | 0.0538 | 5    | 1.2783          | 273912            |
| 1.1013        | 0.1075 | 10   | 1.2124          | 550336            |
| 0.9918        | 0.1613 | 15   | 1.2140          | 821232            |
| 0.8609        | 0.2151 | 20   | 1.2190          | 1094808           |
| 0.7352        | 0.2688 | 25   | 1.2393          | 1360608           |
| 0.7336        | 0.3226 | 30   | 1.2311          | 1633144           |
| 0.6607        | 0.3763 | 35   | 1.2354          | 1902744           |
| 0.543         | 0.4301 | 40   | 1.2269          | 2170672           |
| 0.5362        | 0.4839 | 45   | 1.2253          | 2438088           |
| 0.5783        | 0.5376 | 50   | 1.2295          | 2709272           |
| 0.4413        | 0.5914 | 55   | 1.2153          | 2982760           |
| 0.5566        | 0.6452 | 60   | 1.2091          | 3250856           |
| 0.5763        | 0.6989 | 65   | 1.2251          | 3522440           |
| 0.4629        | 0.7527 | 70   | 1.2077          | 3792592           |
| 0.4905        | 0.8065 | 75   | 1.2210          | 4052656           |
| 0.4028        | 0.8602 | 80   | 1.2064          | 4317496           |
| 0.4751        | 0.9140 | 85   | 1.2065          | 4590056           |
| 0.4461        | 0.9677 | 90   | 1.2108          | 4861056           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1