File size: 2,875 Bytes
693970c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter14_sftsd2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter14_sftsd2

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2046
- Num Input Tokens Seen: 4998392

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.4664        | 0.0531 | 5    | 1.2779          | 265768            |
| 1.0297        | 0.1062 | 10   | 1.2239          | 526776            |
| 0.9672        | 0.1594 | 15   | 1.2051          | 794288            |
| 0.9285        | 0.2125 | 20   | 1.2391          | 1063824           |
| 0.7632        | 0.2656 | 25   | 1.2306          | 1332408           |
| 0.7406        | 0.3187 | 30   | 1.2478          | 1595464           |
| 0.6883        | 0.3718 | 35   | 1.2507          | 1871024           |
| 0.5929        | 0.4250 | 40   | 1.2429          | 2133560           |
| 0.4589        | 0.4781 | 45   | 1.2391          | 2394480           |
| 0.6095        | 0.5312 | 50   | 1.2221          | 2663544           |
| 0.5181        | 0.5843 | 55   | 1.2246          | 2930064           |
| 0.4917        | 0.6375 | 60   | 1.2135          | 3199536           |
| 0.5105        | 0.6906 | 65   | 1.2249          | 3465264           |
| 0.4253        | 0.7437 | 70   | 1.2138          | 3727952           |
| 0.4506        | 0.7968 | 75   | 1.2148          | 3991304           |
| 0.4301        | 0.8499 | 80   | 1.2095          | 4255664           |
| 0.432         | 0.9031 | 85   | 1.2015          | 4523456           |
| 0.3698        | 0.9562 | 90   | 1.2208          | 4781552           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1