--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter16_sftsd2 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter16_sftsd2 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2037 - Num Input Tokens Seen: 5033336 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.4057 | 0.0531 | 5 | 1.2789 | 266712 | | 0.9946 | 0.1061 | 10 | 1.2203 | 535376 | | 0.9751 | 0.1592 | 15 | 1.2176 | 817176 | | 0.8049 | 0.2122 | 20 | 1.2373 | 1083600 | | 0.7624 | 0.2653 | 25 | 1.2358 | 1352608 | | 0.7157 | 0.3183 | 30 | 1.2521 | 1622152 | | 0.54 | 0.3714 | 35 | 1.2346 | 1882312 | | 0.5442 | 0.4244 | 40 | 1.2433 | 2149600 | | 0.5808 | 0.4775 | 45 | 1.2429 | 2416240 | | 0.4783 | 0.5305 | 50 | 1.2305 | 2682968 | | 0.5364 | 0.5836 | 55 | 1.2256 | 2950376 | | 0.5619 | 0.6366 | 60 | 1.2167 | 3214352 | | 0.5027 | 0.6897 | 65 | 1.2278 | 3481120 | | 0.4447 | 0.7427 | 70 | 1.2205 | 3747064 | | 0.3629 | 0.7958 | 75 | 1.2205 | 4015440 | | 0.5072 | 0.8488 | 80 | 1.2094 | 4281048 | | 0.5246 | 0.9019 | 85 | 1.2102 | 4550336 | | 0.5123 | 0.9549 | 90 | 1.2077 | 4814152 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1