--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd1 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd1 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2055 - Num Input Tokens Seen: 4907024 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 1 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.3427 | 0.0527 | 5 | 1.2782 | 258072 | | 1.0971 | 0.1053 | 10 | 1.2131 | 521696 | | 0.9209 | 0.1580 | 15 | 1.2167 | 782872 | | 0.7304 | 0.2107 | 20 | 1.2697 | 1039040 | | 0.6214 | 0.2633 | 25 | 1.2589 | 1307632 | | 0.5449 | 0.3160 | 30 | 1.3018 | 1568000 | | 0.521 | 0.3687 | 35 | 1.2918 | 1824608 | | 0.4267 | 0.4213 | 40 | 1.2783 | 2087280 | | 0.4484 | 0.4740 | 45 | 1.2457 | 2348744 | | 0.403 | 0.5267 | 50 | 1.2346 | 2610176 | | 0.3899 | 0.5793 | 55 | 1.2224 | 2873528 | | 0.3705 | 0.6320 | 60 | 1.2227 | 3133328 | | 0.3662 | 0.6847 | 65 | 1.2187 | 3395112 | | 0.3322 | 0.7373 | 70 | 1.2076 | 3656104 | | 0.3614 | 0.7900 | 75 | 1.2070 | 3917544 | | 0.3462 | 0.8427 | 80 | 1.2021 | 4174120 | | 0.3258 | 0.8953 | 85 | 1.2061 | 4437136 | | 0.3069 | 0.9480 | 90 | 1.2061 | 4699512 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1