File size: 2,875 Bytes
9cb96d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd2

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2160
- Num Input Tokens Seen: 4969888

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 2
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.3282        | 0.0529 | 5    | 1.2782          | 268552            |
| 1.0606        | 0.1058 | 10   | 1.2285          | 533864            |
| 0.9673        | 0.1587 | 15   | 1.2222          | 799192            |
| 0.7577        | 0.2116 | 20   | 1.2580          | 1065712           |
| 0.7055        | 0.2646 | 25   | 1.2578          | 1334136           |
| 0.6601        | 0.3175 | 30   | 1.2654          | 1600744           |
| 0.5988        | 0.3704 | 35   | 1.2742          | 1865248           |
| 0.5391        | 0.4233 | 40   | 1.2674          | 2126184           |
| 0.5215        | 0.4762 | 45   | 1.2479          | 2389800           |
| 0.4847        | 0.5291 | 50   | 1.2539          | 2652896           |
| 0.3997        | 0.5820 | 55   | 1.2492          | 2917336           |
| 0.4981        | 0.6349 | 60   | 1.2381          | 3182592           |
| 0.422         | 0.6878 | 65   | 1.2312          | 3444800           |
| 0.4256        | 0.7407 | 70   | 1.2293          | 3706456           |
| 0.3611        | 0.7937 | 75   | 1.2366          | 3968992           |
| 0.4669        | 0.8466 | 80   | 1.2204          | 4236704           |
| 0.3871        | 0.8995 | 85   | 1.2243          | 4494952           |
| 0.4819        | 0.9524 | 90   | 1.2215          | 4752080           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1