--- license: gemma base_model: google/gemma-2-2b tags: - trl - sft - generated_from_trainer model-index: - name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd2 results: [] --- # collapse_gemma-2-2b_hs2_accumulatesubsample_iter19_sftsd2 This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2160 - Num Input Tokens Seen: 4969888 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 2 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | No log | 0 | 0 | 1.3909 | 0 | | 1.3282 | 0.0529 | 5 | 1.2782 | 268552 | | 1.0606 | 0.1058 | 10 | 1.2285 | 533864 | | 0.9673 | 0.1587 | 15 | 1.2222 | 799192 | | 0.7577 | 0.2116 | 20 | 1.2580 | 1065712 | | 0.7055 | 0.2646 | 25 | 1.2578 | 1334136 | | 0.6601 | 0.3175 | 30 | 1.2654 | 1600744 | | 0.5988 | 0.3704 | 35 | 1.2742 | 1865248 | | 0.5391 | 0.4233 | 40 | 1.2674 | 2126184 | | 0.5215 | 0.4762 | 45 | 1.2479 | 2389800 | | 0.4847 | 0.5291 | 50 | 1.2539 | 2652896 | | 0.3997 | 0.5820 | 55 | 1.2492 | 2917336 | | 0.4981 | 0.6349 | 60 | 1.2381 | 3182592 | | 0.422 | 0.6878 | 65 | 1.2312 | 3444800 | | 0.4256 | 0.7407 | 70 | 1.2293 | 3706456 | | 0.3611 | 0.7937 | 75 | 1.2366 | 3968992 | | 0.4669 | 0.8466 | 80 | 1.2204 | 4236704 | | 0.3871 | 0.8995 | 85 | 1.2243 | 4494952 | | 0.4819 | 0.9524 | 90 | 1.2215 | 4752080 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1