File size: 2,873 Bytes
9abb8b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
license: gemma
base_model: google/gemma-2-2b
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: collapse_gemma-2-2b_hs2_accumulatesubsample_iter4_sftsd0
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# collapse_gemma-2-2b_hs2_accumulatesubsample_iter4_sftsd0

This model is a fine-tuned version of [google/gemma-2-2b](https://huggingface.co/google/gemma-2-2b) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1654
- Num Input Tokens Seen: 5196150

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 16
- seed: 0
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Input Tokens Seen |
|:-------------:|:------:|:----:|:---------------:|:-----------------:|
| No log        | 0      | 0    | 1.3909          | 0                 |
| 1.317         | 0.0543 | 5    | 1.2676          | 278888            |
| 1.2103        | 0.1087 | 10   | 1.1836          | 560856            |
| 1.1544        | 0.1630 | 15   | 1.1540          | 844528            |
| 1.1964        | 0.2174 | 20   | 1.1470          | 1128496           |
| 0.9374        | 0.2717 | 25   | 1.1433          | 1409880           |
| 0.9893        | 0.3261 | 30   | 1.1511          | 1694568           |
| 0.9799        | 0.3804 | 35   | 1.1555          | 1983024           |
| 0.9148        | 0.4348 | 40   | 1.1759          | 2267152           |
| 0.872         | 0.4891 | 45   | 1.1720          | 2553896           |
| 0.7683        | 0.5435 | 50   | 1.1734          | 2832280           |
| 0.7309        | 0.5978 | 55   | 1.1710          | 3116288           |
| 0.7317        | 0.6522 | 60   | 1.1715          | 3400728           |
| 0.6844        | 0.7065 | 65   | 1.1663          | 3683408           |
| 0.6955        | 0.7609 | 70   | 1.1680          | 3959976           |
| 0.6387        | 0.8152 | 75   | 1.1771          | 4241544           |
| 0.6381        | 0.8696 | 80   | 1.1675          | 4526832           |
| 0.6677        | 0.9239 | 85   | 1.1682          | 4803712           |
| 0.6433        | 0.9783 | 90   | 1.1650          | 5085136           |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1